Notes on Fast Fourier Transforms

Vincent Hwang

December 14, 2022

Contents

1

The Chinese Remainder Theorem for Rings

1.1 Goals of This Section . . . . . . . . . . . ..
1.2 Coprime Ideals . . . . . . . . . .. e
1.3 Idempotent Elements . . . . . . . . ... ... o
1.4 CRT for Polynomial Rings . . . . . . ... ... ... ... ... ......
1.5 Proofs . . . . .. e

Number—Theoretic Transforms

2.1 Goals of This Section . . . . . . . . . . . . . . .. . e
2.2 g-Analog and Principal n-th Root of Unity . . . . ... ... ... .....
2.3 Discrete Weighted Transform . . . . .. .. ... ... ... ...
24 Twisting . . . . . Lo
2.5 Proofs . . . ..

Mixed—Radix Fast Fourier Transforms
3.1 Goals of This Section . . . . . . . . . . . e
3.2 Cooley—Tukey Fast Fourier Transform . . . . . ... ... ... ... ....

Brunn-Like Fast Fourier Transforms
4.1 Goals of This Section . . . . . . . . . . . . e
4.2 Bruun’s FFT over C . . . . . . . . .

Good—Thomas Fast Fourier Transform

5.1 Goals of This Section . . . . . . . . . . . . . . . e
5.2 Good-Thomas FFT . . . . . . . . . ... .
5.3 The Number of Multi-Dimensional Transformation . . . ... ... ... ..
5.4 Proofs . . . . . .

Rader’s and Winograd’s Fast Fourier Transforms
6.1 Goals of This Section . . . . . . . . . ... .
6.2 Rader’s and Winograd’s FFT . . . . .. .. .. ... ... ... ... ...,

References



1 The Chinese Remainder Theorem for Rings

This section explains the Chinese remainder theorem for rings. In particular, we follow
Proposition 10 in [Bou89, Section 8, Chapter IJ.

1.1 Goals of This Section

Let R be a ring, Z = {0,...,m — 1} be an index set, and (I;);ez be a system of pair-wise
coprime ideals. We have the following:

e An isomorphism 7

miGI I'L B i€l
sending z to (x mod I;);ez.
e Suppose (;c7z L; = 0.

— There is a system of pair-wise orthogonal central idempotent elements ez € R™
satisfying
Vi € I, I; = (1 — 61)R

_1 .
— n~ " is the map oz — ) ;7 €2

e The existence of I7 with ﬂig I; = 0 is equivalent to the existence of ez.

1.2 Coprime Ideals

e Let Iy and I; be ideals of R. If Iy + I = R, we say Iy and I; are coprime. Equiva-
lently,
drg € Ipdry € I1,rg+1r1 = 1.

e For a system of ideals I7 of R, we say I7 are pair-wise coprime if
Vi,jeI,i;éj—>Ii+Ij:R.

The Chinese remainder theorem for rings states that for a system of pair-wise coprime

ideals I7 of R,
R R

~

Niez i 37 1
with the map x — z mod I7.
1.3 Idempotent Elements
e For an element e € R, we call it idempotent if
e“=e.
e For an idempotent element e € R, we call it central if

Vr € R,re =er.

e For a system of central idempotent elements ez € R™, we call it pair-wise orthogonal
(or simply orthogonal) if
Vi, j € L, €;ej = 5@]'61'.



The Chinese remainder theorem for rings can be stated in terms of a system of pair-wise
orthogonal central idempotent elements ez with Zz‘ez e; = 1 as follows:

R R
g (1—e)R  Ner(l—e)R

with the map xz — > ;.7 e;x;. Furthermore, we have (),c7(1 — ;)R = 0 and 27 —
-1
Y icT €iti = (a: — (z mod (1 — ei)R)iGI)

1.4 CRT for Polynomial Rings

Let R[z] be a polynomial ring, Zo, ...,Z;_1 be finite index sets, and g;, ;.
coprime polynomials. We have the following chain of isomorphisms:

€ R[z] be

1

R[z]

<H’io€I0,...,ih,1€Zh,1 giO ----- ih_1>

i0€ZLo <Hi1€l-1,“.,ih,1€zh,1 giO»---yih—l>

12

1%

I

10€ZL0serth—1€Lp—1

Rz]
H <gz’0,...,ih_1>

1.5 Proofs

Let ez be a system of pair-wise orthogonal central idempotent elements and write I; =
(1 - 6Z)R

o Vi#jli+1=R.

Proof. Since e; = (1 —e;)e; € I;, we choose e; € I; and 1 — e; € I; which sum to 1
as desired. n

® (),ez Ii = 0. We prove the following.
= Niez i = [Liez Li-
— [Liez Ii = 0.

Proof for (Viez Ii = [l;ez Li- We first recall that (V,czJi = Do cs [licz Jr@) for
pair-wise coprime ideals Jz. Next, we prove I;I; = I;1; as follows:

Ll = {

1

Q
|

(1 —ei)rii(1 —ej)ryjlc e NT, ThyisTh,j € R}

k=0
c—1
= {Z(l — ej)rk,i(l — 61‘)Tk7j|c € N+, Tkyis Tk,j S R}
k=0
= L1
These two observations complete the proof. ]



Proof for [[;c7 1i = 0. Since

vrz € R™ JJ(1—ei)ri = (H(1 — ei)> (H ri> = <1 — Zel> <H ri> =0,

i€l i€l i€eT ieZ i€T
we have

c—1
Hli = {Z H(l — €j)rpilc € N+,r;m- € R} =0.

€L k=01i€Z



2 Number—Theoretic Transforms

2.1 Goals of This Section
2.2 ¢-Analog and Principal n-th Root of Unity
Let n € N and ¢ be a symbol. The g-analog [n], is the symbol defined as

Let R be a ring and n € N. For an element w € R, we call it an n-th root of unity if
w™ = 1. Furthermore, we call it a principal n-th root of unity if

Vi € {O,...,n — 1}7[”]@0}'1 = n(So’Z‘.

We denote w,, for a principal n-th root of unity. Furthermore, for an m|n, we usually fix

nl

an wy, and define w,, = w* for an [1m.

2.3 Discrete Weighted Transform

Let R be a ring, n € N coprime to char(R), w, € R be a principal n-th root of unity, and
¢ € R be an invertible element.
The discrete weighted transform (DWT) refers to the following map

{(xﬂxgw = T e
a(x) —  (a(Cwh ))

along with its inverse

n—1 R[z] R|z]
Lo mmey = wotm
(&l) = Ez =0 T;0;

where

2.4 Twisting
Let R be a ring and ¢ € R be an invertible element. We have the following isomorphism:
Rlz] =2 Rly|
@—¢ -1y

An alternative way to write this is follows:

Rlz] . Rlz,y]

(zm—=¢m)  (z—Cy,y" = 1)

and operate as the polynomial ring in y.

2.5 Proofs

Let R be a ring, n € N coprime to char(R), w, € R be a principal n-th root of unity, and
¢ € R be an invertible element. Then

a(z) = (a(Cwy,))



and
n—1
i=0
are inverses of each other.
Proof. We claim the following.
[ ] Vi,j, Ti’l“j = (Si’j’l“i.
o Yl =1.

Once we prove these two identities, we find that the statement is just a polynomial for-
mulation of the CRT.
We first prove Vi, j, 7;7; = d; ;7; as follows: VK =0,...,n — 1, we have

k n—1
[-%'k]""z""j _ % (Z(C_lw;i)h(g_lw;j)k_h+Cn Z (C—lw;i)h<c—lw;j)n+k—h)

n
h=0 h=k+1

1 n—1 ) '
_ EZ( —1w;z)h( —lw;])k—h
h=0

—

n—

1, ANk
= 20 fo ) (%(z ]))
h=0

[y
= (¢l

= [l’k}éi’jTi.

Then, we prove Z?:_ol r; = 1 as follows:



3 Mixed—Radix Fast Fourier Transforms

3.1 Goals of This Section
3.2 Cooley—Tukey Fast Fourier Transform

Let nj = |Z;| and n =[], n;, and define g;; _;, , as follows:

Suilljcing

Gig,...ip_1 — T — Cwn,
Cooley—Tukey FFT refers to the following chain of isomorphisms:
Rz]

<Hio€Io,~--7ih—1€Ih—1 gi0:~~~77;h—1>

H R[]

10€Zo <Hi1€l-1,...,ih,1€.’[h,1 gi07"'7ih—1>

I

1

12

11 Rlz] _
<9i0,...,ih,1>

10€ZL0,y . sin—1€LH 1



4 Brunn-Like Fast Fourier Transforms

4.1 Goals of This Section
4.2 Bruun’s FFT over C

Let nj = |Z;| and n =[], n;, and define g;; _;, , as follows:

Bruun’s FFT refers to the following chain of isomorphisms:
Rlz]

<Hz‘oezo,...,ih_lezh_1 gi03-~~:ih71>

11 R|z]

i0€Zp <Hi1611,...,ih,1EI;L,1 gi01~~-7ih—1>
~ 11 Rz]
10€Z0,+yin—1€Lp—1 <g’i07~--»ih71>
[Bru78] introduced the idea for ng = - - - np—1 = 2. It was later generalized to arbitrary

n;’s in [Mur96].



5 Good—Thomas Fast Fourier Transform

5.1 Goals of This Section

Let R be a ring. Recall that for a group isomorphism G = [[; G4, we have the algebra
isomorphism R[G]| = ®4R[G4]. Good-Thomas FFTs can be regarded as correspondences
between the NTTs defined on R[G| and ®4R[G].

5.2 Good—Thomas FFT

Ly = 1], Zn,;
Let nog, ...,nq—1 be coprime integers, n = [[.n;, and n = " H] i . We have
J a — (a mod n;)
the following:
R[w] ~ ) R[J;7] 1 1 [] o R[:Do, Td— 1]
° iy = ®j <z;J71> or alternatively, =1 <xinjmj’% T 1>
e {a(@) = (a(wi))} = {®, (ale;) = (awi))) }-
5.3 The Number of Multi-Dimensional Transformation
e CRT mapping.
e Ruritanian mapping.
5.4 Proofs
We prove {a(z) — (a(w)))} = {®] (a(xj) > <a(w:{1)>)} as follows.
Proof. Let ar = Y ;— 01 awil and choose wy, = wy/ for the unique (e;) realizing i =
>_j¢ej (tmodn;) (mod n) (so we have [, wn; = wg:j Y= Wn)-
Define
{alo, 5 Z ejijo
ko, ka1 = A5 ejk;-
We have R
Qky,....kq—1
= &Zj ejk;
n—1
lz ejkj
= A;Wn,
i=0
no—1 ng—1—1
o Z emZ ejk;j
- Z Z GZ eﬂ]
10=0 tq—1=0
no—1  na_1—1 >0 €55 2 ek
= D D ane H%
i0=0  ig_1=0
no—1 ng—1—1
- Z o Z Z €;ji; Hw
10=0 tq—1=0
no—1 ng—1—1
= D Dl G IHW
10=0 tq—1=0
O



6 Rader’s and Winograd’s Fast Fourier Transforms

6.1 Goals of This Section

For an odd prime power n = p?, we can compute (a;),_, ,_; (Gj);—0, n—1 with the

aid of a size—pd(p — 1) cyclic convolution.

6.2 Rader’s and Winograd’s FFT

Let n = p® be an odd prime power, R be a ring, and w, € R be a principal n-th root

of unity. We show how to convert part of (ai);—g  ,—1 > (4;); _, 1 into a size-

p?(p — 1) cyclic convolution. Since p? is an odd prime power, there is a g € Zya such that

{g, e ,gpdfl(p_l)} = {e € ZpleLn}. We introduce two equivalences:

(dj)jm = (&gj)jzl,...,pd‘l(pfl)

and

~

(a’i)iLn = (ag*i)izl,...,pd—l(p—l) :
The computation (ai);—g 1+ (@), ,_; can now be written as follows

~ n—1 i P

a; =Y 1"y aiwn if j|n,

5. — ] ) :
a5 =3 @iwni + 3 o; 1, aiwn  otherwise.

Viln,a; — E a;wy! = g a;wy)

iln iln
; » i — w9
= Vjln,az — g a;jw,] = g Ag-iWy,
in iln

10
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