
Pushing the Limit of Vectorized
Polynomial Multiplications

for NTRU Prime

Vincent Hwang(B)

Max Planck Institute for Security and Privacy, Bochum, Germany

vincentvbh7@gmail.com

Abstract. We conduct a systematic examination of vector arithmetic
for polynomial multiplications in software. Vector instruction sets and
extensions typically specify a fixed number of registers, each holding
a power-of-two number of bits, and support a wide variety of vec-
tor arithmetic on registers. Programmers then try to align mathemat-
ical computations with the vector arithmetic supported by the des-
ignated instruction set or extension. We delve into the intricacies of
this process for polynomial multiplications. In particular, we introduce
“vectorization-friendliness” and “permutation-friendliness”, and review
“Toeplitz matrix-vector product” to systematically identify suitable
mappings from homomorphisms to vectorized implementations.

To illustrate how the formalization works, we detail the vectoriza-
tion of polynomial multiplication in Z4591[x]

/〈
x761 − x − 1

〉
used in

the parameter set sntrup761 of the NTRU Prime key encapsulation
mechanism.

For practical evaluation, we implement vectorized polynomial mul-
tipliers for the ring Z4591[x]

/〈
Φ17

(
x96

)〉
with AVX2 and Neon. We

benchmark our AVX2 implementation on Haswell and Skylake and our
Neon implementation on Cortex-A72 and the “Firestorm” core of Apple
M1 Pro. Our AVX2-optimized implementation is 1.99−2.16 times faster
than the state-of-the-art AVX2-optimized implementation by [Bernstein,
Brumley, Chen, and Tuveri, USENIX Security 2022] on Haswell and Sky-
lake, and our Neon-optimized implementation is 1.29−1.36 times faster
than the state-of-the-art Neon-optimized implementation by [Hwang,
Liu, and Yang, ACNS 2024] on Cortex-A72 and Apple M1 Pro.

For the overall scheme with AVX2, we reduce the batch key gener-
ation cycles (amortized with batch size 32) by 7.9%–12.0%, encapsula-
tion cycles by 7.1%–10.3%, and decapsulation cycles by 10.7%–13.3%
on Haswell and Skylake. For the overall performance with Neon, we
reduce the encapsulation cycles by 3.0%–6.6% and decapsulation cycles
by 12.8%–15.1% on Cortex-A72 and Apple M1 Pro.

Keywords: Vectorization · Polynomial Multiplication · Fast Fourier
Transform · NTRU Prime

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
T. Zhu and Y. Li (Eds.): ACISP 2024, LNCS 14896, pp. 84–102, 2024.
https://doi.org/10.1007/978-981-97-5028-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5028-3_5&domain=pdf
https://doi.org/10.1007/978-981-97-5028-3_5


Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 85

1 Introduction

At PQCrypto 2016, the National Institute of Standards and Technology called
for post-quantum cryptography to replace existing public-key cryptography due
to the discovery of polynomial time quantum algorithms solving integer fac-
torization and discrete logarithm [21,23]. Among the candidates, lattice-based
cryptosystems are the most popular due to their balanced key sizes, ciphertext
size, signature size, and performance cycles. In many lattice-based cryptosys-
tems, polynomial multiplication is one of the dominating operations for the
performance cycles. While constructing cryptosystems, cryptographers choose
between various polynomial rings to balance between performance cycles and
various security notions. This paper aims to improve public understanding of
the interactions between the uses of vector arithmetic and the algebraic aspects
of the polynomial rings.

Vector instruction sets and extensions typically specify a fixed number of
vector registers, each holding power-of-two number of bits, and support a variety
of vector arithmetic operating on these registers. Programmers then try to map
the mathematical computations to strings of vector arithmetic supported by
the target instruction set or extension. We thoroughly investigate this process
for polynomial multiplications in lattice-based cryptosystems. There are two
questions we wish to answer in this paper:

1. Why homomorphisms defined on polynomial rings with power-of-two-multiple
number of coefficients are frequently assumed to admit efficient vectorization
processes?

2. Which homomorphisms are suitable for vectorization?

We answer the first question as follows. In a vector instruction set or exten-
sion, there are usually component-wise addition, subtraction, multiplication and
variants. We formalize the notion vectorization-friendliness and explain why
homomorphisms resulting in small-dimensional power-of-two size polynomial
multiplications can be suitably mapped to component-wise arithmetic. After
decomposing a large problem into several small problems, we divide vector
instruction sets and extensions into two groups by the presence of vector-by-
scalar multiplication instructions. An instruction is called vector-by-scalar mul-
tiplication instruction if it multiplies all the components of a vector by a scalar
and returns a vector of elements. If there are vector-by-scalar multiplication
instructions, we explain that if the remaining polynomial multiplications are
Toeplitz matrix-vector products, then vectorization-friendliness suffices to
justify suitable vectorization of the overall transformation. On the other hand, if
there are no vector-by-scalar multiplication instructions, we formalize the notion
permutation-friendliness and relate it to the power-of-two nature of the num-
ber of subproblems.

For the second question, an evident example is the radix-2 Cooley–Tukey fast
Fourier transformation (FFT). Recent work [5] showed that radix-2 Schönhage’s
and Nussbaumer’s FFTs, built upon the power-of-two cyclotomic polynomial
moduli, are convenient ones when radix-2 Cooley–Tukey FFT cannot be defined



86 V. Hwang

over the native coefficient ring. However, Schönhage’s and Nussbaumer’s FFTs
double the number of coefficients for each application, eventually leading to more
small-dimensional polynomial multiplications than the traditional Cooley–Tukey
FFT. More recently, [14] proposed Rader’s FFT for large Fermat-prime-size
transformation and radix-2 Bruun’s FFT for the small-dimensional transforma-
tion and removed the growth of the number of coefficients under the vectoriza-
tion context. The downside is that the Fermat-prime-size transformation from
Rader’s FFT does not nicely align with the power-of-two nature of vectoriza-
tion. We identify that truncated Rader’s FFT over Fermat-prime-size cyclotomic
polynomial moduli, previously used for computing the norm of an abelian exten-
sion with prime conductor [3, Sect. 4.8], is a suitable one for vectorization due
to the power-of-two nature of the transformation size.

Contributions. We summarize our contributions as follows.

– We formalize vectorization-friendliness capturing the nature of component-
wise arithmetic supported by a vector instruction set or extension.

– If there are vector-by-scalar multiplication instructions, we explain that
vectorization-friendly transformations resulting in small-dimensional Toeplitz
matrix-vector products are suitable for vectorization.

– On the other hand, if there are no vector-by-scalar multiplication instructions,
we formalize permutation-friendliness capturing the power-of-two nature of
the number of subproblems.

– We implement our polynomial multipliers in AVX2 and Armv8.0-A Neon for
the ring Z4591[x]

/〈
Φ17

(
x96

)〉
implementing polynomial multiplications in the

NTRU Prime parameter set sntrup761.
– For the polynomial multiplication, our AVX2 implementation outperforms

the state-of-the-art AVX2-optimized implementation from [5] by 1.99× on
Haswell and 2.16× on Skylake, and our Neon implementation outperforms
the state-of-the-art Neon-optimized implementation from [14] by 1.29× on
Cortex-A72 and 1.36× on Apple M1 Pro.

– For the overall scheme, we integrate our AVX2 implementation into the pack-
age libsntrup761 provided by [5] for the batch key generation and the pack-
age supercop for encapsulation and decapsulation. We reduce the amortized
cycles of batch key generation (with batch size 32) by 7.9%–12.0%, encap-
sulation cycles by 7.1%–10.3%, and decapsulation cycles by 10.7%–13.3% on
Haswell and Skylake. As for our Neon implementation, we integrate our Neon
code into the artifact provided by [14]. Our Neon implementation reduces
encapsulation cycles by 3.0%–6.6% and decapsulation cycles by 12.8%–15.1%
on Cortex-A72 and Apple M1 Pro.

Related Works. There is a long list of works related to vectorization and its
challenges. The most relevant one is SPIRAL by [13]. They had attempted to
formalize the vectorization of FFTs for code generation. However, SPIRAL falls
short to cover transformations used in this paper and we believe this paper will
give more insights on extending SPIRAL. Regarding polynomial multiplications
for NTRU Prime, [1,2,4] discussed polynomial multiplications when one of the



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 87

operands has coefficients drawn from {0,±1}, [1] discussed the generic polyno-
mial multiplication with fairly limited support of vectorization, [5,14] discussed
the generic polynomial multiplication with high-dimensional vectorization sup-
port.

Code. Our source code is publicly available at
https://github.com/vector-polymul-ntru-ntrup/NTRU Prime truncation

under CC0 license.

Structure of this Paper. This paper is structured as follows. Section 2 goes
through the preliminaries. Section 3 formalizes the vectorization process, Sect. 4
gives a walkthough on vectorizing polynomial multiplications for sntrup. Finally,
Sect. 5 shows the performance with AVX2 on Haswell and Skylake, and with
Neon on Cortex-A72 and Apple M1 Pro.

2 Preliminaries

2.1 Streamlined NTRU Prime

NTRU Prime [4] is an alternate candidate of key encapsulation mechanism
(KEM) in the 3rd round of NIST Post-Quantum Cryptography (PQC) Standard-
ization and is currently used in OpenSSH 9.0 hybrid sntrup761x25519-sha512
key exchange by default1. NTRU prime KEM [4] operates over the poly-
nomial rings Zq[x]/〈xp − x − 1〉 and Z3[x]/〈xp − x − 1〉 for primes p and
q such that Zq[x]/〈xp − x − 1〉 ∼= Fqp . There are two cryptosystems built
upon Zq[x]/〈xp − x − 1〉 and Z3[x]/〈xp − x − 1〉 – Streamlined NTRU Prime
(sntrup) and NTRU LPRime (ntrulpr). This paper focuses on polynomial
multiplications in sntrup761 with (p, q) = (761, 4591) and the implementations
can be straightforwardly ported into ntrulpr761. See [4] for more details of the
scheme. In the following, we list all the polynomial multiplications and inversions
required for sntrup.

Key generation: We need one inversion in Zq[x]/〈xp − x − 1〉 and one inversion
with invertibility check in Z3[x]/〈xp − x − 1〉 for the secret key, and one
polynomial multiplication in Zq[x]/〈xp − x − 1〉 for the public key.

Encapsulation: We need one polynomial multiplication in Zq[x]/〈xp − x − 1〉 for
encryption.

Decapsulation: We need one polynomial multiplication in Zq[x]/〈xp − x − 1〉 for
encryption, and one polynomial multiplication in Zq[x]/〈xp − x − 1〉 and
one polynomial multiplication in Z3[x]/〈xp − x − 1〉 for decryption.

We focuses on polynomial multiplications and inversions in
Zq[x]/〈xp − x − 1〉 . We call a polynomial multiplication “big-by-small” if one
of the operands is drawn from {0,±1} and “big-by-big” otherwise. Our poly-
nomial multipliers target big-by-big ones and also covers the big-by-small ones

1 https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.

https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime_truncation
https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2


88 V. Hwang

by definition. For encapsulation and decapsulation, we only need big-by-small
polynomial multiplications. For the key generation, we only need big-by-small
polynomial multiplication outside the inversion. As for the inversion, the require-
ment of polynomial multiplications heavily depends on the choice of approach.
We simply focus on the divstep approach avoiding any polynomial multiplica-
tions and leave the incorporation of jumpdivstep [7] as future work.

To see why big-by-big polynomial multiplications are important, we review
Montgomery’s trick for batch inversion used in batch key generation [5]. Let’s
say we want to invert polynomials a0, . . . ,an−1 in Zq[x]/〈xp − x − 1〉 . Instead
of inverting each of them one at a time, we first compute a0,a0a1, . . . ,∏

i=0,...,n−1 ai with n − 1 polynomial multiplications, and invert
∏

i=0,...,n−1 ai.

We now compute
(∏

i=0,...,n−1 ai

)−1

,
(∏

i=0,...,n−2 ai

)−1

, . . . ,a−1
0 with n − 1

polynomial multiplications. Finally, we iterate over j = 1, . . . , n − 1 and com-

pute the inverses as a−1
j =

(∏
i=0,...,j ai

)−1 (∏
i=0,...,j−1 ai

)
. In sntrup, since

all polynomials to be inverted have coefficients in {0,±1}, we need 2n−2 big-by-
small polynomial multiplications, n − 1 big-by-big polynomial multiplications,
and one inversion.

2.2 Basics of Algebra

We first go through some basic notations and definitions of algebraic structures
for this paper. Readers familiar with modules and associative algebras are free
to skip this section and treat this section as a reference. We assume that readers
are all familiar with monoids, groups, rings, and modules and refer to standard
algebra books [9,16,17] for reference. In this paper, all rings are commutative and
unital. Below we go through a short introduction of free modules and associative
algebras over a commutative ring R.

Modules. The central idea of this paper revolves around free-module homo-
morphisms and their tensor products. A module is a generalization of a vector
space where the underlying ground field is relaxed to a ring. We only consider
a special kind of modulues – free modulues of finite ranks. In other words, all
modulues in this paper are of the form Rn for a ring R and a positive integer
n, and all elements can be written as a finite sum of the form

∑
i riei where ei

is the element with ith element one and zero elsewhere for all i. Given two free
modules Rn and Rm, we define the tensor product of Rn and Rm as the free
module consisting of all the elements of the form

∑
i ai ⊗bi. where ai ∈ Rn and

bi ∈ Rm up to certain equivalences.
Suppose we have module homomorphisms f : Rn → Rn and g : Rm → Rm.

We define the tensor product f ⊗ g : Rn ⊗ Rm → Rn ⊗ Rm of f and g as

x ⊗ y �→ f(x) ⊗ g(y).

Recall that module homomorphism between modules of finite ranks can be writ-
ten as matrix multiplications if we specify the bases. Suppose we have bases



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 89

{ei} ⊂ Rn and {ẽj} ⊂ Rm. Then, {ei ⊗ ẽj} is a basis of Rn ⊗Rm. One can show
that the matrix form of f ⊗ g with the basis {ei ⊗ ẽj} is the same as the tensor
product of the matrix forms of f with {ei} and g with {ẽj}.

By unfolding the definition of a tensor product, we have

∀f0, f1 : Rn → Rn,∀g0, g1 : Rm → Rm, (f0 ◦ f1)⊗(g0 ◦ g1) = (f0 ⊗ g0)◦(f1 ⊗ g1)

where ◦ is the function composition. An example that we will frequently
encounter in this paper is the case g0 = g1 = idm, the identity map of Rm.
Suppose we have a factorization for f : Rn → Rn with f = f0 ◦ f1, then we also
have

f ⊗ idm = (f0 ◦ f1) ⊗ (idm ◦ idm) = (f0 ⊗ idm) ◦ (f1 ⊗ idm) .

In general, if f factors into f0 ◦ · · · ◦ fd−1, then f ⊗ idm = (f0 ⊗ idm) ◦ · · · ◦
(fd−1 ⊗ idm).

Associative Algebras. For an R-module M , if we adjoin a ring structure to
M by introducing a binary associative operator with an identity compatible
with 1R to the underlying additive group M , we call M an associative R-
algebra. For simplicity, we call an associative R-algebra an R-algebra or an
algebra when the context is clear. For a degree-n polynomial g ∈ R[x], the
quotient ring R[x]/〈g〉 is an R-algebra since (i) R[x]/〈g〉 is a ring and (ii)

R[x]/〈g〉 = Rn as R-modules by specifying xi =

⎛

⎝0, . . . , 0
︸ ︷︷ ︸

i

, 1, 0, . . . , 0
︸ ︷︷ ︸
n−1−i

⎞

⎠. Sup-

pose g = g (xv) for a positive integer v, we have R[x]/〈g(xv)〉 ∼= R[y]/〈g(y)〉
where R := R[x]/〈xv − y〉 . The crucial point is to interpret an R-algebra homo-
morphism fR for R[y]/〈g(y)〉 as an R-algebra homomorphism for R[x]/〈g(xv)〉 .
We claim that fR ⊗ idv is the desired R-algebra homomorphism. Similarly, if we
have a factorization of an R-algebra homomorphism f = f0 ◦f1 for R[y]/〈g(y)〉 ,
we have a composition of R-algebra homomorphisms f0 ⊗ idv and f1 ⊗ idv for
R[x]/〈g(xv)〉 .

2.3 Vector Arithmetic

We go through the vector instruction set/extension covered in this paper.

AVX2. Advanced vector extension 2 (AVX2) is a vector extension to the x86
instruction architecture. In AVX2, there are 16 ymm registers each holding 256
bits of data. In this paper, we only consider 16-bit arithmetic and regard each
vectors as packed 16-bit elements. Furthermore, we also have several permuta-
tion instructions with two data operands. Frequently, a series of permutation
instructions are used for implementing a certain kind of permutation matrices.

Armv8.0-A Neon. The instruction set architecture Armv8.0-A comes with
the vector extension Neon. In Neon, there are 32 vector registers (v0 to v31)
each holding 128 bits of data. In addition to vector-by-vector multiplication
instructions, we have vector-by-scalar multiplications multiplying a vector of



90 V. Hwang

elements by a scalar. Similar to AVX2, there is a wide variety of permutation
instructions. One of the convenient ones is ext: we concatenate two 128-bit
vector registers and extract a certain contiguous 16-byte data from the 32-byte
data. This allows us to implement cyclic shifts of tuples in a convenient way.

2.4 Cooley–Tukey FFT

Let n =
∏

j nj , and ij runs over 0, . . . , nj − 1 for each j. The Cooley–Tukey

FFT [12] computes R[x]/〈xn − ζn〉 ∼= ∏
i0,...,ih−1

R[x]
/〈

x − ζω
∑

l il

∏
j<l nj

n

〉
in

a layer-by-layer fashion where ωn is a principal n-th root of unity2. The simplest
case is the isomorphism R[x]

/〈
x2h − 1

〉 ∼= ∏
i0,...,ih−1

R[x]
/〈

x − ω
∑

l il2
l

2h

〉
.

However, we will encounter various transformations built upon non-power-of-
two Cooley–Tukey FFTs.

2.5 Good–Thomas FFT

Good–Thomas FFT is an alternative FFT built upon the coprime factors of the
transformation size n. We explain the idea briefly with the smallest case n = 6.
Consider the cyclic transformation F6 : R[x]

/〈
x6 − 1

〉 → ∏
i R[x]

/〈
x − ωi

6

〉
,

If we perform pre- and post-permutation for the 1st and the 4th element
(we start with 0), and define ω3 := ω4

6 , ω2 := ω3
6 , we have P(14)F6P(14) =(

F2 ⊗ I3
) (

I2 ⊗ F3

)
where F2 and F3 are cyclic transformation of sizes 2 and 3,

respectively. Comparing to Cooley–Tukey FFT, we save two multiplications by
ω6 and ω2

6 .

2.6 Truncated Rader’s FFT and Its Inverse

Let p be an odd prime, and I = {0, . . . , p − 1} , I∗ = {1, . . . , p − 1} be index
sets. Rader’s FFT [22] computes the map R[x]/〈xp − 1〉 ∼= ∏

i∈I R[x]
/〈

x − ωi
p

〉

with a size-λ(p) cyclic convolution where λ is the Carmichael’s lambda function.
Due to the page limit, we refer to [22] for the original version and jump into the
truncated version introduced by [3].

Let Φp be the p-th cyclotomic polynomial. Since p is a prime, we have
Φp(x) =

∑
i∈I xi and Φp(x)|(xp − 1). A natural question is to build an effi-

cient transformation for R[x]/〈Φp(x)〉 from the Rader’s FFT for R[x]/〈xp − 1〉 .

We start with isomorphism
∑

i∈I∗ ai−1x
i−1 �→

(
âj =

∑
i∈I∗ ai−1ω

(i−1)j
p

)

j∈I∗
:

R[x]/〈Φp(x)〉 → ∏
j∈I∗ R[x]

/〈
x − ωj

p

〉
, and reindex with i �→ − logg i and

j �→ logg j. We have

âglogg j =
∑

i∈I∗
ai−1ω

(i−1)j
p = ω−j

p

∑

− logg i∈Zλ(p)

aglogg i−1ω
glogg i+logg j

p

2 ∀j = 1, . . . , n − 1,
∑n−1

i=0 ωij
n = 0.



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 91

and find that
(
ωk

p âgk

)
k∈Zλ(p)

is the convolution of
(
ag−k−1

)
k∈Zλ(p)

and
(
ωgk

p

)

k∈Zλ(p)

. This is called the truncated Rader’s FFT. Below is an illus-

tration for p = 5 and g = 2: P(23)

⎛

⎜
⎜
⎝

ω5 ω2
5 ω3

5 ω4
5

ω2
5 ω4

5 ω5 ω3
5

ω3
5 ω5 ω4

5 ω2
5

ω4
5 ω3

5 ω2
5 ω5

⎞

⎟
⎟
⎠ P(312) =

⎛

⎜
⎜
⎜
⎝

ω20

5 ω23

5 ω22

5 ω21

5

ω21

5 ω20

5 ω23

5 ω22

5

ω22

5 ω21

5 ω20

5 ω23

5

ω23

5 ω22

5 ω21

5 ω20

5

⎞

⎟
⎟
⎟
⎠

.

For the inverse, [3, Sect. 4.8.2] showed how to implement it with a size-λ(p) cyclic
convolution. They found that convoluting with 1

p

(
ω−g−k

p − 1
)

k∈Zλ(p)

results in

the desired inversion. We illustrate below for p = 5 and g = 2:
⎛

⎜
⎜
⎜
⎝

ω20

5 ω23

5 ω22

5 ω21

5

ω21

5 ω20

5 ω23

5 ω22

5

ω22

5 ω21

5 ω20

5 ω23

5

ω23

5 ω22

5 ω21

5 ω20

5

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

ω−2−0

5 − 1
ω−2−1

5 − 1
ω−2−2

5 − 1
ω−2−3

5 − 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

5
0
0
0

⎞

⎟
⎟
⎠ .

In summary, we implement η−1 by mapping (âgk)k∈Zλ(p) to
(
ωk

p âgk

)
k∈Zλ(p)

and convoluting with
(
ω−g−k

p − 1
)

k∈Zλ(p)

. Scaling by 1
p is postponed to the end.

See [3, Sects. 4.12.3 and 4.12.4] for a generalization to arbitrary p.

2.7 Bruun’s FFT

Let q be a prime with q ≡ 3 mod 4 and q + 1 = r2w for an odd r. Bruun’s FFT
allows us to split Zq[x]

/〈
x2w

+ 1
〉

into
∏

i
Zq[x]

〈x2±αix−1〉 . See [8] for a proof. For
q = 4591, we can split Zq[x]

/〈
x16 + 1

〉
into size-2 polynomial rings with moduli

of the form x2 ±αix−1 since 4591+1 = 287 ·24. In this paper, we are interested
in the case Zq[x]

/〈
x16 + 1

〉 ∼= ∏
Zq[x]

/〈
x8 ± √

2x4 + 1
〉
. See [14, Sect. 3.3] for

its implementation.
Bruun’s FFT was originally proposed with C as the coefficient ring. See [10]

for the power-of-two case and [20] for the even case.

2.8 Twisting

Let R be a ring, ζ ∈ R be an invertible element, n be an integer, and ξ ∈ R be an
element. We have the isomorphism R[x]/〈xn − ξζn〉 ∼= R[y]/〈yn − ξ〉 by sending
x to ζy. This is called twisting. Obviously, twisting amounts to multiplying all
the coefficients by certain constants and its transformation matrix is a diagonal
matrix. In the literature, twising is commonly specialized to ξ = 1, but we need
the cases ξ = ±1 in this paper.

2.9 Karatsuba

Karatsuba [18] computes the product (a0 + a1x)(b0 + b1x) by evaluating at the
point set {0, 1,∞}. We compute (a0 + a1x)(b0 + b1x) = a0b0 + (a0b1 + a1b0)x +



92 V. Hwang

a1b1x
2 with three multiplications a0b0, a1b1, and (a0 +a1)(b0 + b1) by observing

a0b1 + a1b0 = (a0 + a1)(b0 + b1) − a0b0 − a1b1.

3 Formalization of Vectorization

We formalize “vectorization-friendliness” and “permutation-friendliness”, and
review the role of Toeplitz matrix-vector products in vectorization. While com-
puting with vector instructions, we choose algebra homomorphisms f and g
such that f is vectorization-friendly and g is permutation-friendly or amounts
to computing Toeplitz matrices when there are vector-by-scalar multiplication
instructions. Their composition g ◦ f then admits suitable mapping to vector
arithmetic.

Section 3.1 formalizes vectorization-friendliness capturing the power-of-two
nature of vector registers, Sect. 3.2 formalizes permutation-friendliness capturing
the permutation nature, and Sect. 3.3 reviews small-dimensional Toeplitz matrix-
vector products.

3.1 Vectorization–Friendliness

Conceptually, we call an algebra homomorphism vectorization-friendly if we can
factor it into module homomorphisms with matrix forms of certain kinds of
block diagonal matrices or tensor products with Iv as the right operand. We
first identify a set of matrices that can be implemented efficiently with vector
instructions straightforwardly. Let v′ be a multiple of v. We define BlockDiag
as the set of all block diagonal matrices with each block a v′ × v′ matrix of the
following form:

1. Diagonal matrix: a matrix with non-diagonal entries all zeros.
2. Cyclic/negacyclic shift matrix: a matrix implementing (ai) �→ (

a(i+c) mod v′
)

(cyclic) or (ai) �→
(
(−1)�i+c≥v′�a(i+c) mod v′

)
(negacyclic) for a non-negative

integer c.

Diagonal matrices are suitable for vectorization since we can load v coefficients,
multiply them by v constants, and store them back to memory with vector
instructions. For cyclic/negacyclic shift matrices, we discuss how to implement
them for the following vector instruction sets:

– Armv7/8-A Neon: For cyclic shifts, we use the instruction ext extracting
consecutive elements from a pair of vector registers. We negate one of the
registers before applying ext for negacyclic shifts [14].

– AVX2: For cyclic shifts, we perform unaligned loads, shuffle the last vector
register, and store the vectors to memory. Again, the last vector register is
negated for negacyclic shifts [5].



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 93

Let f be an algebra monomorphism, and Mf be the matrix form of f . We
call f vectorization-friendly if

Mf =
∏

i

(Mfi
⊗ Iv) Sfi

for some Mfi
and Sfi

∈ BlockDiag. The tensor product Mfi
⊗ Iv ensures that

each v-chunk is regarded as a whole while applying Mfi
⊗ Iv. Additionally, f

is vectorization-friendly if and only if f−1 is vectorization-friendly, so we only
need to discuss the vectorization-friendliness of a monomorphism and its inverse
follows immediately.

3.2 Permutation–Friendliness

We introduce the notion “permutation-friendliness”. Conceptually, permutation-
friendliness stands for vectorization-friendliness after applying a special type
of permutation—interleaving. Again, let v′ be a multiple of v. We define the
transposition matrix Tv′2 as the v′2 × v′2 matrix permuting the elements as if
transposing a v′ × v′ matrix. Now we are ready to specify the set Interleave
of interleaving matrices. We call a matrix M interleaving matrix with step v′ if
it takes the form

M = (π′ ⊗ Iv′) (Im ⊗ Tv′2) (π ⊗ Iv′)

for a positive integer m and permutation matrices π, π′ permuting mv′ elements.
The set Interleave consists of interleaving matrices of all possible steps and is
closed under inversion.

We call an algebra monomorphism g permutation-friendly if we can factor
its matrix form M ′

g as

M ′
g =

∏

i

Sgi
Mgi

for Sgi
∈ Interleave and vectorization-friendly Mgi

’s. Immediately, we know
that g is permutation-friendly if and only if g−1 is permutation-friendly.

3.3 Toeplitz Matrix–Vector Product (Small Dimensional)

We go through an alternative for permutation friendliness when there are vector-
by-scalar multiplication instructions. Suppose we have a vectorization-friendly
monomorphism resulting several small-dimensional power-of-two-size cyclic/ne-
gacyclic convolutions. By the definition of vectorization-friendliness, a cyclic/ne-
gacyclic convolution can be phrased as applying a v′ × v′ Toeplitz matrix to a
vector for a v-multiple v′. We call a matrix M Toeplitz if Mi,j = Mi+1,j+1

for all possible i, j. Generally, one can write a polynomial multiplication mod-
ulo xv′ − ζ as an application of a Toeplitz matrix constructed from one of the
operands [6,15,19]. Recently, [11] decomposed the application of a v′×v′ Toeplitz
matrix as a sum of column-to-scalar multiplications and implemented each with
a vector-by-scalar multiplication instruction.



94 V. Hwang

4 Vectorized Polynomial Multipliers

This section describes our polynomial multiplications for Z4591[x]
/〈

x761 − x − 1
〉
.

A standard approach is to multiply in Z4591[x]/〈g〉 with deg(g) > 2 · 760 fol-
lowed by polynomial reduction modulo x761 − x − 1. We propose to multiply in
Z4591[x]

/〈
Φ17

(
x96

)〉
where deg

(
Φ17

(
x96

))
= 1536 > 2 · 760. For simplicity, we

assume R = F4591 in this section.
There are two steps for deciding isomorphisms admitting suitable mapping

to vector arithmetic. The first step is to find an isomorphism honoring our intu-
ition of the memory layout – we choose an isomorphism dividing a large prob-
lem into several subproblems of sizes multiples of v (the number of elements
contained in a vector register). Section 4.1 describes our isomorphisms resulting
several size-16 subproblems. The second step is to decide isomorphisms com-
puting the remaining task. Section 4.2.1 discusses a permutation-friendly app-
roach and Sect. 4.2.2 discusses our Toeplitz matrix-vector product approach.
Finally, we go through a detailed comparisons to existing works with emphases
on vectorization-friendliness and permutation-friendliness in Sect. 4.3.

4.1 The Vectorization-Friendly Phase

We first go through the implementation of

R[x]
〈Φ17 (x96)〉

∼=
(∏ R[x]

〈x16 ± 1〉
)48

.

Since the resulting polynomial rings have size 16, our transformation is evidently
vectorization-friendly. We detail below the construction and its vectorization-
friendliness.

4.1.1 Truncated Rader’s FFT

Let η0 : R16 → R16 be the module map implementing the permutation and
cyclic convolution parts of the truncated size-17 Rader’s FFT. R[x]/〈Φ17(x)〉 ∼=∏15

i=0 R[x]
/〈

x − ωi+1
17

〉
is implemented as mul0◦η0 where mul0 := (ai)i=0,...,15 �→(

ω
−(i+1)
17 ai

)

i=0,...,15
. We tensor the composition mul0 ◦ η0 by I96 to implement

R[x]
/〈

Φ17

(
x96

)〉 ∼= ∏15
i=0 R[x]

/〈
x96 − ωi+1

17

〉
. We then twist all the rings to the

cyclic ones via the product map twist0 :=
∏15

i=0

(
x �→ ω

14(i+1)
17 x

)
3. To sum up,

we implement R[x]
/〈

Φ17

(
x96

)〉 ∼= (
R[x]

/〈
x96 − 1

〉)16 as

twist0 ◦ ((mul0 ◦ η0) ⊗ I96)

which is obviously vectorization friendly.

3 Notice that ω17 = ω1344
17 =

(
ω14
17

)96
.



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 95

R[x]
/〈

Φ17 x96)〉

· · ·
192

twist0 ◦ ((mul0 ◦ η0) ⊗ I96)

R[x]
/〈

x96 − 1
〉

· · ·
12

· · ·
R[x]

/〈
x96 − 1

〉

· · ·
12

16

I16 ⊗ (twist1 ◦ (η1 ⊗ I16))
∏

R[x]
/〈

x16 ± 1
〉

· · ·
4

· · ·

∏
R[x]

/〈
x16 ± 1

〉

· · ·
4

48

Fig. 1. Overview of the correspondence between algebraic maps and 128-bit vector
register view in Neon. Each rectangles holds 128

16
= 8 coefficients and is loaded to a

vector register. Similar justification of vectorization-friendliness holds if we move to
256-bit vector registers in AVX2.

4.1.2 Good–Thomas FFT

Next, we turn the ring R[x]
/〈

x96 − 1
〉

into
(∏

R[x]
/〈

x16 ± 1
〉)3 by applying

Good–Thomas FFT and twisting. Let η1 be the map implementing the Good–
Thomas FFT of dimension 3 × 2, and twist1 twisting the product ring into(∏

R[x]
/〈

x16 ± 1
〉)3. Then, twist1 ◦ (η1 ⊗ I16) implements R[x]

/〈
x96 − 1

〉 ∼=
(∏

R[x]
/〈

x16 ± 1
〉)3. Since there are 16 copies of R[x]

/〈
x96 − 1

〉
, we have

I16 ⊗ (twist1 ◦ (η1 ⊗ I16)) = (I16 ⊗ twist1) ◦ (I16 ⊗ η1 ⊗ I16)

as the overall transformation. Obviously, this is vectorization friendly.
For a more illustrative explanation of how polynomials are mapped to 128-bit

registers, we outline the workflow in Fig. 1 where each rectangles represents a
128-bit register. Note that similar justification holds for 256-bit registers since
we are right-tensoring by I16.

4.2 Small-Dimensional Cyclic/Negacyclic Convolutions

This section goes through our approaches multiplying in
(∏

R[x]
/〈

x16 ± 1
〉)48.

We propose two approaches: a permutation-friendly approach for AVX2 and a
Toeplitz matrix-vector product approach for Neon.



96 V. Hwang

4.2.1 A Permutation-Friendly Approach

Fig. 2. Overview of permutations implementing permutation-friendliness for our
AVX2 implementation defined on

(
R[x]

/〈
x16 ± 1

〉)16
. Same idea applies to

(
R[x]

/〈
x16 ± 1

〉)48
since 48 = 3 · 16. Each rectangles represents a 16-tuple mapped to

a 256-bit vector register in AVX2.

We first go through the permutation-friendly approach used in our AVX2
implementation. Since the goal is to interleave 16 polynomial rings with
the same shape of computation, we show how to map the multiplication in(∏

R[x]
/〈

x16 ± 1
〉)16 to vector arithmetic. We perform an even-odd permuta-

tion over 16-tuples resulting
(
R[x]

/〈
x16 − 1

〉)16 × (
R[x]

/〈
x16 + 1

〉)16 followed
by two copies of T256. This gives us the map

(I2 ⊗ T256) (EvenOdd32 ⊗ I16)

where EvenOdd32 moves the even indices to the first half and the odd indices to
the second half. See Fig. 2 for an illustration. The overall interleaving matrix for(∏ R[x]

〈x16±1〉
)48

can be written as:

(I6 ⊗ T256) (I3 ⊗ EvenOdd32 ⊗ I16)

which is permutation-friendly. Finally, we apply Cooley–Tukey to
R[x]

/〈
x16 − 1

〉 ∼= ∏
R[x]

/〈
x8 ± 1

〉
and Bruun to R[x]

/〈
x16 + 1

〉 ∼=
R[x]

/〈
x8 ± √

2x4 + 1
〉

followed by Karatsuba defined over vector registers.



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 97

4.2.2 Toeplitz Matrix-Vector Products

Recall that one can phrases polynomial multiplications in R[x]
/〈

xv′ ± 1
〉

as Toeplitz matrix-vector products for v′ a multiple of v (cf. Sect. 3.3). We
describe an alternative approach for multiplying in

(∏
R[x]

/〈
x16 ± 1

〉)48 with
Neon. Since each vector registers in Neon holds eight coefficients, we first split
R[x]

/〈
x16 − 1

〉
into

∏
R[x]

/〈
x8 ± 1

〉
, and apply Toeplitz matrix-vector mul-

tiplications in R[x]
/〈

x8 ± 1
〉

and R[x]
/〈

x16 − 1
〉
. The implementations follow

analogously from [11].

4.3 Comparisons to Prior Implementations

We compare our vectorized implementations to prior FFT works operating
over R = Z4591. Table 1 summarizes the vectorization- and permutation-
friendliness of existing polynomial multipliers over R. Table 2 summarizes exist-
ing vectorization-friendly approaches with AVX2 and Neon, Table 3 summarizes
existing permutation-friendly approaches with AVX2, and Table 4 summarizes
existing permutation-friendly and Toeplitz matrix-vector product approaches
with Neon.

Table 1. Summary of maximum possible v justifying vectorization- and permutation-
friendliness of existing polynomial multipliers over Z4591 for Z4591[x]

/〈
x761 − x − 1

〉
.

CT stands for Cooley–Tukey FFT and GT stands for Good–Thomas FFT. If the maxi-
mum possible v of a transformation is greater or equal to the number of halfwords in
a vector register, then the FFT transformation is vectorization-friendly/permutation-
friendly for the given ISA/extension.

[1] [5] [14] This work

ISA/extension Armv7E-M AVX2 Neon Neon/AVX2

# halfword
2 16 8 8 / 16

in a vector register

Domain R[x]

〈x1530−1〉
R[x]

〈
x2048−1
x512+1

〉
R[x]

〈x1632−1〉
R[x]

〈Φ17(x96)〉

FFT
Rader, Schönhage, Rader, truncated Rader,

CT Nussbaumer GT GT

Vectorization-friendly v = 2 (Yes) v = 64 (Yes) v = 32 (Yes) v = 32 (Yes)

Permutation-friendly v = 1 (No) v = 32 (Yes) v = 4 (No) v = 16 (Yes)

Comparison(s) to R[x]
/〈

x1530 − 1
〉
from [1]. The earliest FFT work over R

was implemented by [1]. Since 4591 is a prime, one can only define Cooley–Tukey
FFTs of sizes factors of 4591−1 = 2 ·32 ·5 ·17. They computed the isomorphsims
R[x]

/〈
x1530 − 1

〉 ∼= ∏
i R[x]

/〈
x90 − ωi

17

〉 ∼= ∏
i R[x]

/〈
x10 − ωi

102

〉
with size-17



98 V. Hwang

Table 2. Summary of vectorization-friendly approaches.

ISA/extension [5] [14] This work

AVX2 Neon Neon/AVX2

Domain R[x]
〈

x2048−1
x512+1

〉
R[x]

〈x1632−1〉
R[x]

〈Φ17(x96)〉
FFT Schönhage Rader-17 + GT truncated Rader-17 + GT

Image

(
R[x]

〈x64+1〉
)48 ∏

i
R[x]

〈x16−ωi
102〉

(
∏ R[x]

〈x16±1〉
)48

Rader’s and Cooley–Tukey FFTs. Since 2 is the only power-of-two factor of
1530, their isomorphisms are not vectorization-friendly if there are more than
two elements in a vector register.

Comparison(s) to R[x]
/〈

x2048−1
x512+1

〉
from [5]. We compare our AVX2 imple-

mentation to the state-of-the-art AVX2 work by [5]. In [5], they made a
first attempt to deliver a large-dimensional power-of-two-sized FFT polyno-
mial multiplier in AVX2 based on Schönhage’s and Nussbaumer’s FFTs. Since
(x2048 − 1)/(x512 + 1) is a factor of x2048 − 1, they applied the Schönhage’s
FFT in a similar way for R[x]

/〈
x2048 − 1

〉
, leading to polynomial multiplica-

tions in R[x]
/〈

x64 + 1
〉
. They then applied Nussbaumer’s FFT to all the 48

copies of R[x]
/〈

x64 + 1
〉
. One can show that power-of-two Schönhage’s FFT is

vectorization-friendly and Nussbaumer’s FFT is permutation-friendly, and the
overall computation is suitable for vectorization. As for polynomial multiplica-
tions in R[z]

/〈
z8 + 1

〉
, they applied recursive Karatsuba. The downside of their

approach is the number of subproblems. Since each applications of Schönhage’s
and Nussbaumer’s FFTs doubles the number of coefficients, there are eventu-
ally 1536·4

8 = 768 polynomial multiplications in the ring R[z]
/〈

z8 + 1
〉
. In our

transformation for AVX2, we only need 48 ·4 = 192 size-8 polynomial multiplica-
tions. This is the main reason why our AVX2 implementation outperforms [5]’s
implementation.

Comparison(s) to R[x]
/〈

x1632 − 1
〉
from [14]. Finally, we compare our Neon

implementation to the state-of-the-art Neon work by [14]. They applied a 3-
dimensional Good–Thomas FFT to R[x]

/〈
x1632 − 1

〉
built upon the coprime

factorization 1632
16 = 2 · 3 · 17 and Rader’s FFT for the size-17 transformation,

resulting in R[x]
/〈

x16 − ωi
102

〉
up to a suitable permutation. Since 102 · 16 =

1632 is not a multiple of 64 (there are 8 elements in each vector register and 64 =
82), the follow up computation can’t be permutation-friendly. They then applied
radix-2 Cooley–Tukey and Bruun’s FFT to

∏
i<96 R[x]

/〈
x16 − ωi

102

〉
. For the

remaining part
∏

i≥96 R[x]
/〈

x16 − ωi
102

〉
, they interleaved the polynomials with

don’t-cares and applied näıve computation. Our transformation removes this
part.



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 99

Table 3. Summary of permutation-friendly approaches with AVX2. K stands for Karat-
suba.

[5] This work

Domain

(
R[x]

〈x64+1〉
)48 (

∏ R[x]

〈x16±1〉
)48

FFT Nussbaumer CT + Bruun

Image

(
R[z]

〈z8+1〉
)768 (

∏ R[x]

〈x8±1〉 × ∏ R[x]

〈x8±√
2x4+1〉

)48

Follow up polymul. Recursive K K

Multiplication instruction Vector-by-vector Vector-by-vector

Table 4. Summary of permutation-friendly and Toeplitz matrix-vector product
approaches multiplying small-dimensional polynomials in Neon.

[14] This work

Domain
∏

i
R[x]

〈x16−ωi
102〉

(
∏ R[x]

〈x16±1〉
)48

FFT CT + Bruun CT

Image

∏
i<48

(
∏ R[x]

〈x8±ωi
51〉

)
× (

∏ R[x]

〈x8±1〉 × R[x]

〈x16+1〉
)48

∏
i<48

(
∏ R[x]

〈x8±√
2ω64i

51 x4+ω128i
51 〉

)

× ∏
i>=96

R[x]

〈x16−ωi
102〉

Follow up polymul. Näıve (size-8) + K (size-16) Toeplitz

Multiplication instruction Vector-by-vector Vector-by-scalar

5 Results

5.1 Benchmarking Environment

Intel Processors with AVX2. We benchmark our AVX2 implementation on
a single core of an Intel(R) Core(TM) i7-4770K (Haswell) processor with fre-
quency 3.5 GHz, and Intel(R) Xeon(R) CPU E3-1275 v5 (Skylake) with fre-
quency 3.6 GHz. For benchmarking polynomial multiplications, we compile with
GCC 10.4.0 on Haswell and GCC 11.3.0 on Skylake using the optimization
flag -O3. For the batch key generation, we reuse the libsntrup761-20210608
package from [5]. For the encapsulation and decapsulation, we benchmark with
the benchmarking framework SUPERCOP, version supercop-20230530. Turbo-
Boost and hyperthreading are disabled throughout the entire benchmarking.

Armv8.0+-A Neon. We benchmark our Neon implementation on a Raspberry
Pi 4 Model B and Apple M1 Pro. Raspberry Pi 4 comes with the quad-core
(Cortex-A72) Broadcom BCM2711 chipset and runs at 1.5GHz. Apple M1 Pro



100 V. Hwang

is a system-on-chip featuring eight high-performance cores “Firestorms” running
at 3.2 GHz and two energy-efficient cores “Icestorm” running at 2.0 GHz. We
compile our code with GCC version 12.3.0 with -O3 on Cortex-A72, and GCC
version 13.2.0 with -O3 on Firestorm.

5.2 Performance of Polynomial Multiplication

We provide the performance cycles of functions mulcore and polymul in Table 5.
mulcore computes the product in Z4591[x] with potential scaling by a predefined
constant, and polymul additionally reduces the product modulo x761−x−1 and
mitigates the potential scaling. Our AVX2-optimized mulcore outperforms the
state-of-the-art AVX2 implementation from [5] by factors of 1.90× and 2.05×
on Haswell and Skylake, and polymul outperforms the state-of-the-art AVX2
implementation by factors of 1.99× and 2.16× on Haswell and Skylake. As for
our Neon-optimized mulcore and polymul, they outperform the state-of-the-art
Neon implementation from [14] by factors of 1.25× and 1.29× on Cortex-A72,
and 1.25× and 1.36× on Apple M1 Pro.

Table 5. Performance cycles of polynomial multiplications over Z4591 for sntrup761.

AVX2

[5]∗ This work [5]∗ This work

Haswell Skylake

mulcore (Z4591[x]) 23 460 12 336 20 070 9 778

polymul

(
Z4591[x]

〈x761−x−1〉
)

25 356 12 760 21 364 9 876

Neon

[14] This work [14]∗ This work

Cortex-A72 Apple M1 Pro

mulcore (Z4591[x]) 37 475 29 909 8 120 6 508

polymul

(
Z4591[x]

〈x761−x−1〉
)

39 788 30 912 9 091 6 697

∗ Our own benchmarks.

5.3 Performance of Scheme

Finally, we compare the overall performance of sntrup761, and summarize them
in Table 6.

AVX2 Code Package(s). For the AVX2-optimized implementation, we inte-
grate our code into the package libsntrup761 with version 20210608 provided
by [5], and report the amortized cost of batch key generation with batch size 32.
Additionally, we also integrate our code into the package supercop with version
20230530, and report the performance of encapsulation and decapsulation after
contacting the authors of [5] for reproducing the numbers in their work.



Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 101

Neon Code Package(s). For the Neon-optimized implementation, We inte-
grate our code into the artifact provided by [14].

Overall Performance with AVX2. For the batch key generation with batch
size 32, we reduce the amortized cost by 12.0% on Haswell and 7.9% on Skylake.
For encapsulation, we reduce the cost by 7.1% on Haswell and 10.3% on Skylake.
For decapsulation, we reduce the cost by 10.7% on Haswell and 13.3% on Skylake.

Overall Performance with Neon. For the encapsulation, we reduce the cycles
by 6.6% on Cortex-A72 and 3.0% on Apple M1 Pro, and for the decapsulation,
we reduce the cycles by 15.1% on Cortex-A72 and 12.8% on Apple M1 Pro.

Table 6. Overall performance of our AVX2 implementation on Haswell and Skylake
and our Neon implementation on Cortex-A72 and Apple M1.

AVX2

Haswell Skylake

[5]∗∗ This work [5]∗∗ This work

Batch key generation 154 552 136 003 129 159 118 939

SUPERCOP This work SUPERCOP This work

Encapsulation 47 464 44 108 40 653 36 486

Decapsulation 56 064 50 080 47 387 41 070

Neon

Cortex-A72 Apple M1 Pro

[14]∗∗ This work [14]∗∗ This work

Key generation 6 574 055 6 539 849 1 813 947 1 806 741

Encapsulation 150 054 140 107 64 924 62 959

Decapsulation 159 286 135 184 43 778 38 196
∗∗ Our own benchmarks.

References

1. Alkim, E., et al.: Polynomial multiplication in NTRU prime comparison of opti-
mization strategies on Cortex-M4. IACR Trans. Crypt. Hardw. Embed. Syst.
2021(1), 217–238 (2021). https://tches.iacr.org/index.php/TCHES/article/view/
8733

2. Alkim, E., Hwang, V., Yang, B.Y.: Multi-parameter support with NTTs for NTRU
and NTRU prime on Cortex-M4. IACR Trans. Crypt. Hardw. Embed. Syst.
2022(4), 349–371 (2022)

3. Bernstein, D.J.: Fast norm computation in smooth-degree abelian number fields.
Cryptology ePrint Archive, Paper 2022/980 (2022). https://eprint.iacr.org/2022/
980

https://tches.iacr.org/index.php/TCHES/article/view/8733
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://eprint.iacr.org/2022/980
https://eprint.iacr.org/2022/980


102 V. Hwang

4. Bernstein, D.J., et al.: NTRU Prime. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project [21] (2020). https://ntruprime.cr.yp.to/

5. Bernstein, D.J., Brumley, B.B., Chen, M.S., Tuveri, N.: OpenSSLNTRU: faster
post-quantum TLS key exchange. In: 31st USENIX Security Symposium (USENIX
Security 22), pp. 845–862 (2022)

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

7. Bernstein, D.J., Yang, B.Y.: Fast constant-time gcd computation and modular
inversion. IACR Trans. Crypt. Hardw. Embed. Syst. 2019(3), 340–398 (2019).
https://tches.iacr.org/index.php/TCHES/article/view/8298

8. Blake, I.F., Gao, S., Mullin, R.C.: Explicit factorization of x2k

+ 1 over Fp with
prime p ≡ 3 mod 4. Appl. Algebra Eng. Commun. Comput. 4(2), 89–94 (1993)

9. Bourbaki, N.: Algebra I. Springer, Heidelberg (1989)
10. Bruun, G.: z-transform DFT filters and FFT’s. IEEE Trans. Acoust. Speech Sig.

Process. 26(1), 56–63 (1978)
11. Chen, H.T., Chung, Y.H., Hwang, V., Yang, B.Y.: Algorithmic views of vectorized

polynomial multipliers – NTRU. In: Chattopadhyay, A., Bhasin, S., Picek, S.,
Rebeiro, C. (eds.) Progress in Cryptology, INDOCRYPT 2023. LNCS, vol. 14460,
pp. 177–196. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56235-8 9

12. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19(90), 297–301 (1965)

13. Franchetti, F., et al.: Spiral: extreme performance portability. Proc. IEEE 106(11),
1935–1968 (2018). https://ieeexplore.ieee.org/document/8510983

14. Hwang, V., Liu, C.T., Yang, B.Y.: Algorithmic views of vectorized polynomial
multipliers – NTRU prime. In: Pöpper, C., Batina, L. (eds.) Applied Cryptography
and Network Security, ACNS 2024. LNCS, vol. 14584, pp. 24–46. Springer, Cham
(2024). https://doi.org/10.1007/978-3-031-54773-7 2

15. Hwang, V.B.: Case studies on implementing number–theoretic transforms with
Armv7-M, Armv7E-M, and Armv8-A. Master’s thesis, National Taiwan Uni-
versity (2022). https://github.com/vincentvbh/NTTs with Armv7-M Armv7E-
M Armv8-A

16. Jacobson, N.: Basic Algebra I. Courier Corporation (2012)
17. Jacobson, N.: Basic Algebra II. Courier Corporation (2012)
18. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by auto-

matic computers. Dokl. Akad. Nauk 145(2), 293–294 (1962)
19. Írem Keskinkurt Paksoy, Cenk, M.: Faster NTRU on ARM Cortex-M4 with

TMVP-based multiplication. IEEE Transac. Circ. Syst. I Regul. Pap. 69(10), 4083–
4092 (2022). https://ieeexplore.ieee.org/document/9835023

20. Murakami, H.: Real-valued fast discrete Fourier transform and cyclic convolution
algorithms of highly composite even length. In: 1996 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing Conference Proceedings, vol. 3,
pp. 1311–1314 (1996)

21. NIST, The US National Institute of Standards and Technology: Post-
quantum cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography

22. Rader, C.M.: Discrete Fourier transforms when the number of data samples is
prime. Proc. IEEE 56(6), 1107–1108 (1968)

23. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

https://ntruprime.cr.yp.to/
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://doi.org/10.1007/978-3-031-56235-8_9
https://ieeexplore.ieee.org/document/8510983
https://doi.org/10.1007/978-3-031-54773-7_2
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://ieeexplore.ieee.org/document/9835023
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography

	Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime
	1 Introduction
	2 Preliminaries
	2.1 Streamlined NTRU Prime
	2.2 Basics of Algebra
	2.3 Vector Arithmetic
	2.4 Cooley–Tukey FFT
	2.5 Good–Thomas FFT
	2.6 Truncated Rader's FFT and Its Inverse
	2.7 Bruun's FFT
	2.8 Twisting
	2.9 Karatsuba

	3 Formalization of Vectorization
	3.1 Vectorization–Friendliness
	3.2 Permutation–Friendliness
	3.3 Toeplitz Matrix–Vector Product (Small Dimensional)

	4 Vectorized Polynomial Multipliers
	4.1 The Vectorization-Friendly Phase
	4.2 Small-Dimensional Cyclic/Negacyclic Convolutions
	4.3 Comparisons to Prior Implementations

	5 Results
	5.1 Benchmarking Environment
	5.2 Performance of Polynomial Multiplication
	5.3 Performance of Scheme

	References


