
Algorithmic Views of Vectorized
Polynomial Multipliers – NTRU

Han-Ting Chen1, Yi-Hua Chung2, Vincent Hwang2,3(B), and Bo-Yin Yang2(B)

1 National Taiwan University, Taipei, Taiwan
r10922073@csie.ntu.edu.tw

2 Academia Sinica, Taipei, Taiwan
yhchiara@gmail.com, vincentvbh7@gmail.com, by@crypto.tw

3 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. The lattice-based post-quantum cryptosystem NTRU is used
by Google for protecting Google’s internal communication. In NTRU,
polynomial multiplication is one of bottleneck. In this paper, we explore
the interactions between polynomial multiplications, Toeplitz matrix-
vector products, and vectorization with architectural insights. For a uni-
tal commutative ring R, a positive integer n, and an element ζ ∈ R, we
reveal the benefit of vector-by-scalar multiplication instructions while
multiplying in R[x]/〈xn − ζ〉 .

We aim at designing an algorithm exploiting no algebraic and number–
theoretic properties of n and ζ. An obvious way is to multiply in R[x]
and reduce modulo xn − ζ. Since the product in R[x] is a polynomial
of degree at most 2n − 2, one usually chooses a polynomial modulus g
such that (i) deg(g) ≥ 2n − 1, and (ii) there exists a well-studied fast
polynomial multiplication algorithm f for multiplying in R[x]/〈g〉 .

We deviate from common approaches and point out a novel insight
with dual modules and vector-by-scalar multiplications. Conceptually, we
relate the module-theoretic duals of R[x]/〈xn − ζ〉 and R[x]/〈g〉 with
Toeplitz matrix-vector products, and demonstrate the benefit of Toeplitz
matrix-vector products with vector-by-scalar multiplication instructions.
It greatly reduces the register pressure, and allows us to multiply with
essentially no permutation instructions that are commonly used in vec-
torized implementation.

We implement the ideas for the NTRU parameter sets ntruhps2048677
and ntruhrss701 on a Cortex-A72 implementing the Armv8.0-A architec-
ture with the single-instruction-multiple-data (SIMD) technology Neon.
For polynomial multiplications, our implementation is 2.18× and 2.23×
for ntruhps2048677 and ntruhrsss701 than the state-of-the-art opti-
mized implementation. We also vectorize the polynomial inversions and
sorting network by employing existing techniques and translating AVX2-
optimized implementations into Neon. Compared to the state-of-the-art
optimized implementation, our key generation, encapsulation, and decap-
sulation for ntruhps2048677 are 7.67×, 2.48×, and 1.77× faster, respec-
tively. For ntruhrss701, our key generation, encapsulation, and decapsu-
lation are 7.99×, 1.47×, and 1.56× faster, respectively.

Keywords: Toeplitz matrix · NTRU · Vectorization · Dual Module

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Chattopadhyay et al. (Eds.): INDOCRYPT 2023, LNCS 14460, pp. 177–196, 2024.
https://doi.org/10.1007/978-3-031-56235-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56235-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-56235-8_9

178 H.-T. Chen et al.

1 Introduction

At PQCrypto 2016, the National Institute of Standards and Technology (NIST)
announced the Post-Quantum Cryptography (PQC) Standardization Process for
replacing existing standards for public-key cryptography with quantum-resistant
cryptosystems [15]. For lattice-based cryptosystems, polynomial multiplications
had been the most time-consuming operations. In this paper, we investigate the
interations between the underlying mathematical structure of polynomial rings
and the architectural insights of vector-by-scalar multiplication instructions in
instruction set architectures (ISAs).

In the NTRU submission [6] to the NIST PQC Standardization, polynomial
rings of the form Zq[x]/〈xn − 1〉 and Zq[x]

/〈∑n−1
i=0 xi

〉
are used where Zq is an

integer ring, and n is a prime. Since xn −1 = (x−1)
∑n−1

i=0 xi, multiplications in

Zq[x]
/〈∑n−1

i=0 xi
〉

is often implemented as Zq[x]/〈xn − 1〉 followed by reduction

modulo
∑n−1

i=0 xi. In this paper, we focus on the polynomial multiplications in
Zq[x]/〈xn − 1〉 .

Common approaches for multiplying two size-n polynomials in
Zq[x]/〈xn − 1〉 usually multiply in Zq[x] and reduce modulo xn − 1. Let a, b
be polynomials in Zq[x]/〈xn − 1〉 and f be an algebra monomorphism comput-
ing ab = f−1 (f(a)f(b)) in Zq[x]. Recent work [13] showed that the module-
theoretic dual f(a)∗ can be used for multiplying a Toeplitz matrix and a vector.
Since polynomial multiplications in Zq[x]/〈xn − 1〉 can be regarded as a Toeplitz
matrix-vector multiplication, we don’t need the reduction modulo xn − 1 any-
more.

In this paper, we point out the architectural benefit of Toeplitz matrix-vector
products for ISAs implementing vector-by-scalar multiplication instructions. We
show that the outer-product approach multiplying two matrices in cubic time
implies efficient Toeplitz matrix-vector products with vector-by-scalar multipli-
cation instructions.

1.1 Contributions

We summarize our contributions as follows.

– We point out the architectural benefit of Toeplitz matrix-vector products
for vectorization and implement the ideas on a Cortex-A72 implementing
Armv8.0-A where vector-by-scalar multiplication instructions are supported.

– We explain that Toeplitz matrix-vector product is actually a generic app-
roach – it is only tied to the shape of polynomial rings and not the under-
lying monomorphism. Prior work [13] doesn’t seem to observe this and
they compared the Toeplitz matrix-vector product with Toom–Cook and the
plain polynomial multiplication with number-theoretic transform1 followed
by reduction modulo xn − 1.

1 Number-theoretic transform refers to a broad family of algebra monomorphisms that
doesn’t contain Toom–Cook.

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 179

– For the performance of polynomial multiplications, we outperform the state-
of-the-art optimized implementation by 2.18× and 2.23× for the NTRU
parameter sets ntruhps2048677 and ntruhrss701, respectively.

– For the overall performance of the scheme, our ntruhps2048677 key genera-
tion, encapsulation, and decapsulation is 7.67×, 2.48×, and 1.77× faster than
the state-of-the-art optimized implementation; our ntruhrss701 key genera-
tion, encapsulation, and decapsulation is 7.99×, 1.47×, and 1.56× faster than
the state-of-the-art optimized implementation.

1.2 Code

Our source code is publicly available at
https://github.com/vector-polymul-ntru-ntrup/NTRU.

1.3 Structure of This Paper

This paper is structured as follows: Sect. 2 describes our target operations and
platforms. Section 3 surveys polynomial transformations used for multiplications.
Section 4 goes through the benefit of Toeplizt matrix–vector products. Section 5
describes our implementations. We show the performance numbers in Sect. 6.

2 Preliminaries

Sections 2.1 describe the polynomials rings in NTRU, and Sect. 2.2 describes our
target platform Cortex-A72.

2.1 Polynomials in NTRU

The NTRU submission comprises two families NTRU-HPS and NTRU-HRSS.
Both operate on polynomial rings Z3[x]/〈Φn〉 , Zq[x]/〈Φn〉 , and Zq[x]/〈xn − 1〉
where q is a power of 2, n is a prime, and Φn is the nth cyclotomic poly-
nomial, which for prime n is xn−1

x−1 =
∑

i<n xi. We target the parameter sets
ntruhps2048677 ((q, n) = (2048, 677)) and ntruhrss701 ((q, n) = 8192, 701).
For more parameter sets and details, we refer to the specification [6]. While
NTRU also requires inversions in Z3[x]/〈Φn〉 and Zq[x]/〈xn − 1〉 , we focus on
multiplying polynomials in Z2048[x]

/〈
x677 − 1

〉
and Z8192[x]

/〈
x701 − 1

〉
.

2.2 Cortex-A72

Our target platform is the ARM Cortex-A72. Cortex-A72 implements the 64-bit
Armv8.0-A instruction set architecture. It is a superscalar Central Processing
Unit (CPU) with an in-order frontend and an out-of-order backend. We summa-
rize some architectural features relevant to this paper, and refer to [1] for more
details about the pipelines.

https://github.com/vector-polymul-ntru-ntrup/NTRU

180 H.-T. Chen et al.

SIMD Registers. In Armv8.0-A, there are 32 architectural 128-bit SIMD reg-
isters each viewable as packed 8-, 16-, 32-, or 64-bit elements. The width of the
element is specified the suffices .16B .8H, .4S, and .2D respectively on the reg-
ister name. For referencing a certain lane, we use the annotation .H[5] for the
5th (zero-based) halfword of the register and similarly for other lanes and data
widths [2, Figure A1-1].

Armv8-A Vector Instructions. A plain mul multiplies corresponding vector
elements and returns same-sized results. Additionally, mul also refers to another
instruction encoding — vector-by-scalar multiplication — if the last operand is
a lane of a register. In this case mul multiplies the vector by a scalar (the lane
value). This simple feature plays significant roles on maximizing register utiliza-
tion and minimizing permutations. There are many variants of multiplications:
mla/mls computes the same product vector and accumulates to or subtracts
from the destination. Next, the shifts: shl shifts left; sshr arithmetically shifts
right. For basic arithmetic, the usual add/sub adds/subtracts the corresponding
elements. Then we have permutations — uzp{1,2} extracts the even and odd
positions respectively from a pair of vectors and concatenates the results into
a vector. zip{1,2} takes the bottom and top halves of a pair of vectors and
riffle-shuffles them into the destination.

3 Polynomial Multiplications

This section surveys the Chinese remainder theorem for polynomial rings and
Toom–Cook, and is structured as follows. We assume all the rings are commu-
tative and unital in this paper. Sect. 3.1 reviews the Chinese remainder theorem
for polynomial rings. This forms the basis of various fast polynomial ring trans-
formations. Section 3.2 reviews Toom–Cook. Section 3.3 reviews the bit losses of
Toom–Cook.

3.1 The Chinese Remainder Theorem for Polynomial Rings

Let n =
∏

l nl and gi0,...,ih−1
∈ R[x] be coprime polynomials for il ∈ [0, nl). The

CRT gives us the following the isomorphism

∏
i0,...,il−1

R[x]〈∏
il,...,ih−1

gi0,...,ih−1

〉 ∼=
∏

i0,...,il

R[x]〈∏
il+1,...,ih−1

gi0,...,ih−1

〉

for all l = 1, . . . , h−12. We call each of the isomorphism “a layer of computation”
and “a layer” for short. Usually, multiplications in

∏
i0,...,ih−1

R[x]
/〈

gi0,...,ih−1

〉

2 For possibly non-commutative unital rings, we only have R[x]
/(〈gi〉 ∩ 〈

gj

〉) ∼=
R[x]/〈gi〉 × R[x]

/〈
gj

〉
for coprime polynomials gi and gj . If R is commutative,

R[x] is also commutative and we have 〈gi〉 ∩ 〈
gj

〉
= 〈gi〉

〈
gj

〉
=

〈
gigj

〉
. This leads

to R[x]
/〈

gigj

〉 ∼= R[x]/〈gi〉 × R[x]
/〈

gj

〉
in our context.

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 181

are cheap. If all the layers are cheap, we have an algorithmic improvement for
multiplying polynomials in R[x]

/〈∏
i0,...,ih−1

gi0,...,ih−1

〉
. If the nl is a small

constant, then it is usually cheap to decompose a polynomial ring into a product
of nl polynomial rings.

3.2 Toom–Cook (TC) and Karatsuba

For a positive integer n, we define R[x]<n as {a(x) ∈ R[x]|deg (a(x)) < n}, the
set of polynomials with degree less than n. Toom–Cook [7,17] and Karatsuba [11]
are divide-and-conquer approaches for multiplying polynomials in R[x]. We can
also use them for multiplying polynomials in R[x]<n. We introduce y ∼ x

n
k

(zero-pad so that k|n) [4], and map R[x]<n ↪→ R[x]
/〈

x
n
k − y

〉
[y]<k ↪→ R′[y]<k

for R′ = R[x]/〈g〉 with deg g ≥ 2n
k − 1.

For a, b ∈ R′[y]<k, a k-way Toom–Cook computes ab ∈ R′[y]<2k−1 via
evaluating a, b at suitably chosen si’s in R′. In other words, we apply the map
R′[y]<k ↪→ R′[y]

/〈∏2k−2
i=0 (y − si)

〉 ∼= ∏2k−2
i=0 R′[y]/〈y − si〉 .

If one of the evaluation points is si = ∞, the corresponding map into
R′[y]/〈y − si〉 takes the highest degree coefficient (deg-(k − 1) for a, b, deg-
(2k − 2) for ab). [11] chose k = 2 at {si}i = {0, 1,∞}; [17] chose {si}i =
{0,±1, . . . ,±(k − 1)}; and [18, Page 31] replaced −k + 1 with ∞. We write
TC(2k−1)×k for the matrix mapping the coefficients of a deg < k polyno-
mial into

∏2k−2
i=0 R′[y]/〈y − si〉 and TC−1

(2k−1)×(2k−1) for the matrix mapping
∏2k−2

i=0 R′[y]/〈y − si〉 into R[y]
/〈∏2k−2

i=0 (y − si)
〉

.
A key observation is that while working over Z2k for k = 5 and {si} ={

0,±1,±2,± 1
2 , 3,∞}

, TC−1
9×9 only requires “division by 8”. This implies 3-bit

losses. The matrix TC−1
9×9 will be stated explicitly in the full version.

3.3 Enlarging Coefficient Rings

We briefly explain how to divide a power of 2 when 2 is not invertible, for example
while working over Z2k . Suppose we want r ∈ Z2k . We instead compute 2εr ∈
Z2k+ε , and right-shift 2εr by ε bits [4, Section 7, Paragraph “What to do when
2 is not invertible”]. For our Toom–Cook defined over Z2k , we would compute
in Z216 so r = 216−kr

216−k ∈ Z2k can be derived by right-shifting 216−kr ∈ Z216 by
16 − k bits.

4 Toeplitz Matrix–Vector Product

In this section, we go through the benefit of Toeplitz matrix–vector products.
The fundamental of using Toeplitz matrix–vector product is best described via
R-modules, dual R-modules, and associative R-algebra. When the context is
clear, we call an R-module a module and an associative R-algebra an algebra.

182 H.-T. Chen et al.

Section 4.1 reviews some basics about modules and algebras. Section 4.2
distinguish the inner-product-based and outer-product-based approaches for
matrix–vector product. Section 4.3 introduces Toeplitz matrix–vector product.
Section 4.4 explains the benefit of vector-by-scalar multiplications. Section 4.5
presents the generic Toeplitz matrix–vector product conversion from ring
monomorphisms computing the double-size products.

4.1 Module and Associative Algebra

This section goes through some basics about modules, dual modules, and asso-
ciative algebras. Readers familiar with these basic algebraic structures can skip
this section.

Module and Dual Module. Let (M,+) be an abelian group and R a ring. We
turn M into an R-module by introducing a scalar multiplication ·M : R×M → M
(we write r ·M a for (·M)(r,a)) satisfying the following:

– ∀a, b ∈ M,∀r, s ∈ R, (r + s) ·M (a + b) = r ·M a + r ·M b + s ·M a + s ·M b.
– ∀a ∈ M, 1 ·M a = a.
– ∀a ∈ M,∀r, s ∈ R, (rs) ·M a = r ·M (s ·M a).

We call (M,+, ·M) a left R-module. One can define a right R-module in a similar
way by identifying a scalar multiplication from M × R to M . Since we assume
R is commutative, we do not distinguish between left and right R-modules and
simply call them R-modules. For elements b0, . . . , bn−1 ∈ M , if they are linearly
independent and every element in M can be expressed as a linear combination
of b0, . . . , bn−1, we call {b0, . . . , bn−1} a basis of M and n the rank. A free
module of rank n is a module with a basis of n elements and is very close to
an n-dimensional vector space in our context. We denote by Rn for the free
module of rank n. Notice that a ring R and a polynomial ring R[x]/〈g〉 are free
modules, and the matrix ring Mn×n(R) is an R-module.

An R-module homomorphism is a map η : M → N satisfying:

∀r ∈ R,∀a, b ∈ M,η(r ·M a + b) = r ·N η(a) + η(b).

One can verify that the set of R-module homomorphisms HomR(M,R) from M
to R is an R-module. We call HomR(M,R) the dual of M , and denote it as M∗.
If M is a free R-module of finite rank, it is isomorphic to M∗. For an R-module
homomorphism η : M → N , we define the transpose of η as the R-module
homomorphism η∗ : N∗ → M∗ sending a∗ to a∗ ◦ η.

Associative Algebra. For rings R and A, we turn A into an associative R-
algebra by introducing a module structure. One identifies the module addition
with the ring addition, and provide a scalar multiplication ·A : R × A → A for
the module structure satisfying

∀r ∈ R,∀a, b ∈ A, r ·A (ab) = (r ·A a)b = a(r ·A b).

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 183

An R-algebra homomorphism is a map that is a ring homomorphism and a
module homomorphism at the same time.

Obviously, a polynomial ring is an R-algebra and all the ring monomor-
phisms in Sect. 3 are also module monomorphisms; therefore, they are algebra
monomorphisms.

4.2 Matrix–Vector Products

There are two basic ways to multiply a matrix by a vector. For a matrix M ,
we denote M [i0][i1] for the (i0, i1)-th entry, M [i0][−] for the i0-th row, and
M [−][i1] for the i1-th column of M . Let A be an n0 × n1 matrix a B be a
column vector of n1 elements. We wish to compute the matrix-vector product
C = AB. Algorithm 1 computes the result with several inner products of the
rows of the matrix and the vector. Algorithm 2 accumulates several products of
the columns of the matrix and the corresponding elements of the vector.

Algorithm 1. Inner-product-based matrix–vector multiplication.
1: for i0 = 0, . . . , n0 − 1 do
2: for i1 = 0, . . . , n1 − 1 do
3: C[i0] = C[i0] + A[i0][i1]B[i1]
4: end for
5: � Inner product of the vectors A[i0][-] and B[-].
6: end for

Algorithm 2. Outer-product-based matrix–vector multiplication.
1: for i1 = 0, . . . , n1 − 1 do
2: for i0 = 0, . . . , n0 − 1 do
3: C[i0] = C[i0] + A[i0][i1]B[i1]
4: end for
5: � Outer product of the vectors A[-][i1] and B[i1].
6: end for

In the context of a vector instruction set, the former translates into vector-
by-vector multiplications with interleaved operands, requiring transposition of
the inputs and outputs, and a larger number of registers. The latter can be
easily implemented with vector-by-scalar multiplications, requiring much fewer
permutation instructions and less rigid instruction scheduling. It is easily seen
that in the context of matrix multiplications, Algorithm 1 is a special case of
the inner product approach (cf. Algorithm 3), and Algorithm 2 is a special case
of the outer product approach (cf. Algorithm 4). We also call them accordingly.

184 H.-T. Chen et al.

Algorithm 3. Inner-product-based matrix–matrix multiplication.
1: for i0 = 0, . . . , n0 − 1 do
2: for i1 = 0, . . . , n1 − 1 do
3: for i2 = 0, . . . , n2 − 1 do
4: A[i0][i1] = C[i0][i1] + A[i0][i2]B[i2][i1]
5: end for
6: � Inner product of the vectors A[i0][-] and B[-][i1].
7: end for
8: end for

Algorithm 4. Outer-product-based matrix–matrix multiplication.
1: for i2 = 0, . . . , n2 − 1 do
2: for i0 = 0, . . . , n0 − 1 do
3: for i1 = 0, . . . , n1 − 1 do
4: C[i0][i1] = C[i0][i1] + A[i0][i2]B[i2][i1]
5: end for
6: end for
7: � Outer product of the vectors A[-][i2] and B[i2][-].
8: end for

4.3 Toeplitz Matrices

Let M be an m × n matrix over the ring R. We call it a Toeplitz matrix if it
takes the form

M =

⎛
⎜⎜⎜⎜⎜⎝

an−1 an−2 · · · a1 a0

an an−1 · · · a2 a1

...
...

. . .
...

...
am+n−3 am+n−4 · · · am−1 am−2

am+n−2 am+n−3 · · · am am−1

⎞
⎟⎟⎟⎟⎟⎠

, for all possible i, j,Mi,j = Mi+1,j+1.

We denote M as Toeplitzm×n(am+n−2, . . . , a0).

Toeplitz Matrices for Weighted Convolutions. For a weighted convolution c =
ab =

(∑
i aix

i
) (∑

i bix
i
) ∈ R[x]/〈xn − ζ〉 , we choose an n′ ≥ n, zero-pad a

and c to size-n′ polynomials a′ and c′, respectively, and define Expandn→n′,ζ =

(∑
i<n bix

i, ζ
) �→

⎛
⎝0, . . . , 0︸ ︷︷ ︸

n′−n

, bn−1, . . . , b0, ζbn−1, . . . , ζb1, 0, . . . , 0︸ ︷︷ ︸
n′−n

⎞
⎠. We have

c′ = Toeplitzn′×n′
(
Expandn→n′,ζ (b)

)
a′.

Toeplitzn×n

(
Expandn→n,ζ(−)

)
(−) is exactly the asymmetric mul by [3,

Section 4.2]. See [8, Paragraph “A Toeplitz matrix view of asymmetric multi-
plication”, Sect. 8.3.2] for explanations.

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 185

4.4 Small-Dimensional Cases

Toeplitz matrix–vector multiplications are extensively used in our implemen-
tations. For a fast polynomial ring transformation resulting weighted convolu-
tions, we apply the outer-product-based Toeplitz matrix–vector multiplication.
Existing works [3,14,16] applied the inner product approach with pre-and post-
transposes. The Toeplitz structure admits fast construction of the full matrix.
For a weighted convolution over x4 − ζ, we apply Expand4→4,ζ with ext instruc-
tions, and accumulate vector-by-scalar products. Algorithm 5 is an illustration.

Algorithm 5. Outer product approach for R[x]
/〈

x4 − ζ
〉
.

Inputs: a = a0 + a1x + a2x
2 + a3x

3, b = b0 + b1x + b2x
2 + b3x

3.
Outputs: c = ab mod (x4 − ζ).

1: b = b3||b2||b1||b0
2: t0 = a3||a2||a1||a0

3: Compute t = ζa3||ζa2||ζa1||ζa0 with Barrett multiplication.
4: � [3] proposed an interleaved version of this; others [14,16] reduced the

interleaved partial results instead.
5: � The remaining steps are different from [3].
6: ext t1, t, t0, #3 · 4 � t1 = a2||a1||a0||ζa3

7: ext t2, t, t0, #2 · 4 � t2 = a1||a0||ζa3||ζa2

8: ext t3, t, t0, #1 · 4 � t3 = a0||ζa3||ζa2||ζa1

9: (lo, hi) = (smull, smull2)(t0, b0)
10: (lo, hi) = (lo, hi)(smlal, smlal2)(t1, b1)
11: (lo, hi) = (lo, hi)(smlal, smlal2)(t2, b2)
12: (lo, hi) = (lo, hi)(smlal, smlal2)(t3, b3)
13: c = Montgomery long(lo, hi)

Generally speaking, once the Toeplitz matrix is constructed via exts or mem-
ory loads (recall that we can instead store an n × n Toeplitz matrix as an array
of 2n−1 elements), vector-by-scalar multiplications significantly reduce the reg-
ister pressure and remove the follow up permutation instructions. We illustrate
the differences between inner-product-based and outer-product-based Toeplitz
matrix–vector multiplication for

⎛
⎜⎜⎝

a0 a′
1 a′

2 a′
3

a1 a0 a′
1 a′

2

a2 a1 a0 a′
1

a3 a2 a1 a0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

b0
b1
b2
b3

⎞
⎟⎟⎠

where a′
1 = ζa3, a

′
2 = ζa2, and a′

3 = ζa1 for the weighted convolutions defined
in R[x]

/〈
x4 − ζ

〉
. Figure 2 illustrates the register view of inner-product-based

Toeplitz matrix–vector multiplication and Fig. 1 for the outer-product-based one.
For Fig. 2, we apply log2 4 · 4

2 = 4 pairs of (trn1, trn2) to each operand to reach
the register view. While applying vector-by-vector multiplications, the inter-
leaved operands occupy 11 registers and the interleaved partial results occupy

186 H.-T. Chen et al.

4 or 8 registers (this depends on the coefficient ring). Finally, we also need to
transpose the interleaved results with 4 pairs of (trn1, trn2). On the other hand,
Fig. 1 requires no additional permutations and avoids the interleaved operands
and results. This implies nearly no permutation instructions and very low regis-
ter pressure.

Fig. 1. Outer-product-based Toeplitz matrix–vector multiplication via vector-by-scalar
multiplication. No permutations are required once we have data in registers v0, . . . , v3.
We only need 5 registers v0, . . . , v4 for holding the operands and 1 or 2 registers for
the partial results. (Color figure online)

Fig. 2. Inner-product-based Toeplitz matrix–vector multiplication via vector-by-vector
multiplication. One load (a0, . . . , a3), . . . , (a12, . . . , a15) into registers (v0, . . . , v3),
and transpose the registers as a 4 × 4 matrix. Same for (v4, . . . , v7) holding
(b0, . . . , b3), . . . , (b12, . . . , b15) and (v8, . . . , v11) holding (c0, . . . , c3), . . . , (c12, . . . , c15).
Notice that we need to hold the registers v0, v4, . . . , v11 for computing a0b0 + c1b1 +
c2b2 + c3b3. Therefore, we need 11 registers (we don’t need (c0, c4, c8, c12)) for the
operands. Since we also need registers for holding the partial results (4 registers for
Z216 and 8 registers otherwise), the register pressure is high and forbids us to generalize
to size-16 computations. (Color figure online)

4.5 Large-Dimensional Toeplitz Transformation

There are several benefits when working on Toeplitz matrices. Firstly, we
only need to store m + n − 1 coefficients Mm−1,0, . . . ,M0,0, . . . ,M0,n−1 of the
matrix. Secondly, additions/subtractions of two Toeplitz matrices require only

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 187

m + n − 1 additions/subtractions in R. Finally, submatrices from adjacent rows
and columns are also Toeplitz matrices. These properties enable efficient divide-
and-conquer computations when the dimension is large.

For the sake of generality, multiplying two polynomials a, b ∈ R[x]<k will
be considered as ab ∈ R[x]<n with n ≥ 2k − 1. Given an a ∈ R[x]<k, we write
(a,−) : Rk → Rn for the module homomorphism b �→ ab and (a,−)∗ its trans-
pose. Suppose we have an R-algebra S where multiplications are much faster
than in R[x]<n, the Toeplitz matrix-vector product (TMVP) can be defined for
an R-algebra homomorphism f : R[x]<n → S with f |R[x]<k

a monomorphism.

Definition 1. Let S be an R-algebra and f : R[x]<n → S be an R-algebra
homomorphism, with fk := f |R[x]<k

: R[x]<k → S a monomorphism. Further-
more, let revk→k : Rk → Rk be the index reversal map and idm→n : Rm → Rn

be the inclusion (pad 0’s) map for m ≤ n. The TMVP associated with f refers
to the following module homomorphisms:

(
Toeplitzk×k(−)

)
(a) = revk×k ◦ f∗

k ◦ (fk(a),−)∗ ◦ (f−1)∗ ◦ id(2k−1)→n.

We call (f−1)∗ ◦ id(2k−1)→n split–matrix, fk(a) split–vector, (fk(a),−)∗ base
multiplication, and f∗

k interpolation. If n = 2k − 1, f = TC(2k−1)×(2k−1), then
this is the k-way Toeplitz-TC matrix–vector product [12,13]. Generally, any R-
algebra monomorphism suffices. See Appendices A for a formal proof and B for
examples. We go through a higher-level overview of the idea.

Since f is a ring monomorphism, we implement the module homomorphism
(a,−) as idn→(2k−1)◦f−1◦(fk(a),−)◦fk, take the transpose of (a,−), and relate
(a,−)∗ to the Toeplitzation Toeplitzk×k(−) and the right-vector-multiplication
(−)(a). This allows us to convert any fast computation for (a,−) into some-
thing for

(
Toeplitzk×k(−)

)
(a). Since (Toeplitz(−)) (a) = revk×k ◦ (a,−)∗,

and (−,a)R[x]/〈xk−ζ〉 = idk→k ◦ (Toeplitz(−)) (a) ◦ Expandk→k,ζ as shown in
Fig. 3, we eventually have a fast computation for (−,a)R[x]/〈xk−ζ〉 .

5 Implementations

We propose two implementations for ntruhps2048677 with 16-bit arithmetic
modulo 65536: (i) Toom-Cook implements Toom–Cook with the splitting
sequence 5 → 3 → 3 → 2, and (ii) Toeplitz-TC computes the Toeplitz matrix–
vector product derived from Toom-Cook. Our Toom-Cook applies a more aggres-
sive divide-and-conquer than prior works [9,14] by carefully choosing the point
set for evaluations. Our Toeplitz-TC reveals the benefit of vector-by-scalar mul-
tiplications, which is more significant than the findings of [13].

188 H.-T. Chen et al.

Fig. 3. Relations between (−,a)R[x]/〈xk−1〉 , (Toeplitzk×k(−))(a), and (a, −)∗.

For ntruhrss701, we implement the Toeplitz-TC approach with the same
splitting sequence 5 → 3 → 3 → 2 with the 3’s referring to 3-way Karat-
suba instead of Toom-3. We skip the Toom–Cook approach since it is obvi-
ously not worth implementing given the experience from ntruhps2048677. Since
the implementation Toeplitz-TC of ntruhrss701 is very close to the one for
ntruhps2048677, we skip the description for ntruhrss701.

Section 5.1 describes the Toom-Cook approach, and Sect. 5.2 describes the
Toeplitz-TC approach. Additionally, we summarize existing strategies multi-
pliying polynomials in ntruhps2048677 in Table 1.

5.1 Toom-Cook

We first describe our chosen Toom–Cook splitting sequence and implementation
considerations. We then detail our memory optimization for the interpolation of
TC−1.

Chosen Splitting Sequence. We choose the splitting sequence Toom–5 →
two Toom–3’s → Karatsuba. We first zero-pad the size-677 polynomials to size-
720 for ease of vectorization and compute in Z216 . Since the coefficient ring of
ntruhps2048677 is Z2048 and 216

2048 = 25, divisions by 2e for e = 0, . . . , 5 translate
into shifting e bits. We choose the splitting sequence 5 → 3 → 3 → 2. Our
Toom-Cook consists of one layer of TC9×5, two layers of TC5×3’s, one layer of

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 189

Table 1. Overview of divide-and-conquer strategies multiplying polynomials in
R[x]<720 for ntruhps2048677. We first start with R[x]<720 and alternatingly list all
the number of subproblems of divide-and-conquer and the resulting ring. For example,
the sequence R[x]<720, 4 → 7, R[x]<180 means that size-720 polynomials are first sec-
tioned into four size-180 polynomials, and mapped to seven size-180 polynomials, and
the resulting polynomial multiplications defined in R[x]180.

[13] [14] This work

Ring R[x]<720 R[x]<720 R[x]<720

Divide-and-conquer 4 → 7 3 → 5 5 → 9

Ring R[x]<180 R[x]<240 R[x]<144

Divide-and-conquer 3 → 5 4 → 7 3 → 5

Ring R[x]<60 R[x]<60 R[x]<48

Divide-and-conquer 3 → 5 2 → 3 3 → 5

Ring R[x]<20 R[x]<30 R[x]<16

Divide-and-conquer 2 → 3 2 → 3 2 → 3

Ring R[x]<10 R[x]<15 R[x]<8

TC3×2, 675 size-8 schoolbooks, one layer of TC−1
3×3, two layers of TC−1

5×5’s, and
one layer of TC−1

9×9. We choose the point sets
{
0,±1,±2,± 1

2 , 3,∞}
(cf. Sect. 3.2)

for TC9×5 and {0,±1, 2,∞} for TC5×3. The interpolation matrices TC−1
9×9,

TC−1
5×5, and TC−1

3×3 incur 3-, 1-, and 0-bit losses of precision, respectively. These
add up to 5 bits, allowing us to invert correctly.

Comparisons to Prior Splitting Sequence [14]. [14] treated each polynomial as a
size-720 polynomial, and applied Toom–Cook with the splitting sequence 3 →
4 → 2 → 2. The polynomial size goes down to 240 after the Toom-3, 60 after
the Toom-4, and 15 after two Karatsuba’s. Since 60 is not a multiple of 8, [14]
basically padded to size-64 polynomials before Karatsuba. In this paper, we
instead split via the sequence 5 → 3 → 3 → 2 down to size-8 schoolbooks. Our
evaluation points for Toom-5 has the same precision loss as Toom-4. This is 1
fewer bit than the standard {0,±1,±2,±3, 4,∞}. We also avoid zero-padding in
vectorization. We merge the two Toom-3 layers (for both TC5×3 and TC−1

5×5)
to reduce memory operations.

Memory Optimizations for Interpolations. Let k|n, g′ be a polynomial
of degree at least 2n

k − 1, and R′ = R[x]/〈g′〉 . Recall that TC(2k−1)×k com-

putes R[x]
/〈

x
n
k − y

〉
[y] ↪→ R′[y]

/〈∏2k−2
i=0 (y − si)

〉 ∼= ∏2k−2
i=0 R′[y]/〈y − si〉

and results in computations in R[x]/〈g′〉 . After examining the source code, we
find that prior works [9,14] inverted the steps ∼= and ↪→ separately. Algorithm 6 is
an illustration. Inverting ∼= means applying the interpolation matrix and invert-
ing ↪→ means accumulating the overlapped coefficients while substituting y with

190 H.-T. Chen et al.

x
n
k in each of the polynomials in R[x]/〈g′〉 . We instead alternate between the

inversions of ∼= and ↪→ to reduce memory operations, in essence merging two
layers of computations.

Algorithm 6. TC−1
5×5 by [9,14].

Input: Size-3 polynomials p0, . . . , p4.
Output: c[0-10] =
TC−1

5×5(p0, p1, p2, p3, p4).

1: Declare array mem[5].
2: for i = {0, 1, 2} do
3: mem[0-4] =

TC−1
5×5 (p0[i], . . . , p4[i]).

4: � Memory read and write.
5: for j = {0, . . . , 4} do
6: c[2j + i] = c[2j + i] +

mem[j]
7: end for
8: � Memory read and write.
9: end for

Algorithm 7. Our TC−1
5×5.

Input: Size-3 polynomials p0, . . . , p4.
Output: c[0-10] =
TC−1

5×5(p0, p1, p2, p3, p4).

1: Registers r[11].
2: r[0-4] = TC−1

5×5 (p0[0], . . . , p4[0])
3: r[6-10] = TC−1

5×5 (p0[2], . . . , p4[2])
4: � Memory read.
5: r[5] = 0
6: for j = {0, . . . , 4} do
7: r[i + 1] = r[i + 1] + r[i + 6]
8: end for
9: for j = {0, . . . , 5} do

10: c[2j] = r[j]
11: end for
12: � Memory write.
13: r[0-4] = TC−1

5×5 (p0[1], . . . , p4[1])
14: � Memory read.
15: for j ← 0 to 4 do
16: c[2j + 1] = r[j]
17: end for
18: � Memory write.

5.2 Toeplitz-TC

We apply the Toeplitz matrix–vector product with TC’s as the underlying
monomorphisms and choose the same splitting sequence 5 → 3 → 3 → 2. We
call it Toeplitz-TC.

Our Toeplitz-TC with the Splitting Sequence 5 → 3 → 3 → 2. Algo-
rithm 8 describes our Toeplitz-TC implementation. Essentially, we regard size-
677 polynomials a and b as size-720 polynomials. In practice, we zero-pad a and
b to length 680 and omit the computations involving the indices 680, . . . , 719.
Then, we apply one layer of Toeplitz-TC-5, two layers of Toeplitz-TC-3’s, and
one layer of Toeplitz-TC-2. Algorithm 9 describes our Toeplitz-TC--3--3--2
following Toeplitz-TC--5.

Each steps of Algorithms 8 and 9 is implemented as a subroutine. We merge
computations while using all available registers without register spills. Initializa-
tions to zeros and the corresponding computations are also omitted for efficiency.
While applying TC, TC′−1∗, and TC′∗, we prefer shifts over multiplications and
reuse intermediate values.

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 191

Algorithm 8. Toeplitz-TC for ntruhps2048677.
Input: size-720 polynomials a, b.
Output: the size-677 polynomial c = ab mod (x677 − 1).

1: Declare uint16 t buff a[9][288], buff b[9][144], buff c[9][144].
2: buff a[0-8][0-287] = TC−1∗

9×9 (a)
3: � See Section 4.5 for definition.
4: buff b[0-8][0-143] = TC9×5 (b)
5: for i = {0, . . . , 8} do
6: buff c[i][0-143] = Toeplitz-TC-3-3-2 (buff a[i][0-287], buff b[i][0-143])
7: end for
8: c[0-676] = TC∗

9×5 (buff c[0-8][0-143])

Algorithm 9. Toeplitz-TC-3-3-2.
Input: a 144 × 144 Toeplitz matrix M, and a size-144 vector v.
Output: the size-144 vector c = M · v.
1: Declare uint16 t M1[5][96], M2[5][5][3][16].
2: Declare uint16 t v1[5][5][16], c1[5][5][16].
3: M1[0-4][0-95] = TC−1∗

5×5 (M[0-143][0-143])
4: for i = {0, . . . , 4} do
5: M2[i][0-4][0-2][0-15] =

(
TC−1∗

3×3 ◦ TC−1∗
5×5

)
(M1[i][0-95])

6: end for
7: v1[0-4][0-4][0-15] = (TC5×3 ◦ TC5×3) (v)
8: c1[i][j][0-15] = TC∗

3×2 (M2[i][j][0-2][0-15] · TC3×2 (b1[i][j][0-15]))
9: c[0-143] = (TC∗

5×3 ◦ TC∗
5×3) (c1[0-4][0-4][0-15])

Comparisons to [13]. [13] implemented the Toeplitz matrix–vector product with
TC(2k−1)×k as the underlying monomorphisms on Cortex-M4, but they chose the
splitting sequence 4 → 3 → 2 → 2. We improve the efficiency by applying a more
aggressive splitting sequence. For the first layer, we use Toeplitz–TC–5 instead of
Toeplitz–TC–4. Both strategies yield 3-bit losses. Although our TC−1∗

9×9, TC9×5,
and TC∗

9×5 require more multiplications, we have a smaller number of school-
books, which is the bottleneck of the computation. Compared to [13], our
Cortex-A72 implementation reaches the best performance with size-8 school-
books instead of size-16 ones. Also, [13] used TC−1∗

(2k−1)×(2k−1), TC(2k−1)×k and
TC∗

(2k−1)×k to compute while we multiply some constants to the precomputed
matrices for easier computation. The modified TC−1∗

(2k−1)×(2k−1), TC(2k−1)×k

and TC∗
(2k−1)×k will be shown in the full version.

6 Results

We present the performance numbers in this section. We focus on polynomial
multiplications, leaving the fast constant-time GCD [5] as future work.

192 H.-T. Chen et al.

6.1 Benchmark Environment

We use the Raspberry Pi 4 Model B featuring the quad-core Broadcom BCM2711
chipset. It comes with a 32 kB L1 data cache, a 48 kB L1 instruction cache, and
a 1 MB L2 cache and runs at 1.5 GHz. For hashing, we use the aes, sha2, and
fips202 from PQClean [10] without any optimizations due to the lack of corre-
sponding cryptographic units. For the randombytes, [3] used the randombytes
from SUPERCOP which in turn used chacha20. We extract the conversion from
chacha20 into randombytes from SUPERCOP and replace chacha20 with our
optimized implementations using the pipelines I0/I1, F0/F1. We use the cycle
counter of the PMU for benchmarking. Our programs are compilable with GCC
10.3.0, GCC 11.2.0, Clang 13.1.6, and Clang 14.0.0. We report numbers for the
binaries compiled with GCC 11.2.0.

6.2 Performance of Vectorized Polynomial Multiplications

Table 2 summarizes the performance of vectorized polynomial multiplications.
All of our implementations outperform the state-of-the-art Toom–Cook [14]. For
ntruhps2048677, our Toeplitz-TC and Toom-Cook are 2.18× and 1.56× faster
than [14]. Comparing Toeplitz-TC and Toom-Cook based on the same splitting
sequence, the result is consistent to [13]. But the most significant reason is the
use of vector-by-scalar multiplications. This finding is new. For ntruhrss701,
we outperform [14]’s implementation by 2.23×.

Table 2. Overview of polymuls.

ntruhps2048677 ntruhrss701

Implementation Cycles

[14] 58 286 70 061

Toeplitz-TC 26 784 31 478

Toom-Cook 37 318 –

6.3 Performance of Schemes

Before comparing the overall performance, we first illustrate the performance
numbers of some other critical subroutines. Most of our optimized implementa-
tions of these subroutines are not seriously optimized except for parts involving
polynomial multiplications. We simply translate existing techniques and AVX2-
optimized implementations into Neon. Notice that inversions over Z2 and Z3, and
sorting networks are implemented in a generic sense. With fairly little effort, they
can be used for other parameter sets.

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 193

Inversions. For ntruhps2048677, we need one inversion in Z2048[x]
/〈

x677 − 1
〉

and one inversion in Z3[x]
/〈

x677−1
x−1

〉
. The inversion in Z2048[x]

/〈
x677 − 1

〉
con-

sists of one inversion in Z2[x]
/〈

x677 − 1
〉

and lifting to Z2048[x]
/〈

x677 − 1
〉

with
eight polynomial multiplications since the coefficient ring is Z2048. We use the
1-bit form of Z2 for the inversion over Z2 without any algorithmic improvements
and obtain a 20.41× speedup, leading to 10.27× overall speedup for the inver-
sion over Z2048. The rest of the improvement for inversion over Z2048 comes
from our improved polynomial multiplications (we use Toeplitz-TC here). For
the inversion in Z3[x]

/〈
x677−1

x−1

〉
, we use bitsliced implementation and obtain a

8.6× speedup. For ntruhrss701, we outperform obtain 22.63×, 10.04×, 9.46×
performance improvement for inversions over Z2, Z8192, and Z3, respectively.
Table 3 summarizes the performance of inversions.

Table 3. Performance of inversions in NTRU.

Operation Ref Ours Ref Ours

ntruhps2048677 ntruhrss701

poly Rq inv 3 506 621 341 482 3 938 579 392 478

poly R2 inv 2 791 906 136 776 3 175 330 140 290

poly S3 inv 4 153 823 482 005 4 765 259 503 590

crypto sort int32 104 691 17 819 – –

Sorting Network. We translate AVX2-optimized sorting network into Neon.

Performance of ntruhps2048677 and ntruhrss701. Table 4 summarizes our
ntruhps2048677 and ntruhrss701. We compare our Toeplitz-TC to the exist-
ing NTRU implementations on Cortex-A72 [14]. For ntruhps2048677, our
key generation is 7.67× faster. The main contribution is our optimized inver-
sions, multiplications lifting the inverse in Z2[x]

/〈
x677 − 1

〉
, followed by poly-

nomial multiplications in Z2048[x]
/〈

x677 − 1
〉

(for lifting) and sorting net-
work. Our ntruhps2048677 encapsulation is 2.48× faster. The main contri-
bution is the sorting network followed by polynomial multiplications. Our
ntruhps2048677 decapsulation is 1.77× faster. The improvement entirely comes
from the improved polynomial multiplications. For ntruhrss701, our key gen-
eration, encapsulation, and decapsulation are 7.99×, 1.47×, and 1.56× faster
than [14], respectively.

Finally, Table 5 details the numbers of ntruhps2048677 and ntruhrss701
with Toeplitz-TC. Notice that only performance-critical subroutines are shown.

194 H.-T. Chen et al.

Table 4. Overall cycles of ntruhps2048677 and ntruhrss701. K stands for key gen-
eration, E stands for encapsulation, and D stands for decapsulation.

Operation ntruhps2048677 ntruhrss701

K E D K E D

Ref 8 245 039 227 980 331 274 9 397 305 134 737 365 558

[14] 7 686 272 196 526 212 265 8 599 610 87 380 221 986

Toeplitz-TC 1 002 187 79 213 120 208 1 076 810 59 625 142 174

Toom-Cook 1 127 089 88 037 146 422 – – –

Table 5. Detailed performance numbers of ntruhps2048677 and ntruhrss701 with
Toeplitz-TC. Only performance-critical subroutines are shown.

A Proof for the Toeplitz Transformation

For an algebra homomorphism f : R[x]<n → S with fk := f |R[x]<k
a monomor-

phism, and module homomorphism (a,−) =

{
Rk → Rn

b �→ ab
where n ≥ 2k − 1,

we have
(
Toeplitzk×k(−)

)
(a) = revk×k ◦ f∗

k ◦ (fk(a),−)∗ ◦ (f−1)∗ ◦ id(2k−1)→n.

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU 195

Proof. Observe (a,−)∗ = f∗
k ◦ (fk(a),−)∗ ◦ (

f−1
)∗ ◦ id(2k−1)→n, it remains to

show
(
Toeplitzk×k(−)

)
(a) = revk×k ◦ (a,−)∗. Let z = (z0, . . . , z2k−2), [k] =

{0, . . . , k − 1}, and 0m0,m1 the m0 × m1 matrix of zeros. We have:
(
revk×k ◦ Toeplitzk×k(z)

)
(a)

= (zi+j)(i,j)∈[k]2 (aj)(j,0)∈[k]×[1]

=

⎛
⎝ ∑

j∈[k]

zi+jaj

⎞
⎠

(i,0)∈[k]×[1]

=
∑
j∈[k]

(zi+jaj)(i,0)∈[k]×[1]

=
∑
j∈[k]

(0k,j ajIk 0k,k−j−1) (zh)(h,0)∈[2k−1]×[1]

= Toeplitzk×(2k−1) (01,k−1, a0, . . . , ak−1,01,k−1) (zh)(h,0)∈[2k−1]×[1]

= (a,−)∗(z).

Applying revk×k from the left finishes the proof (cf. [18, Theorem 6]).

B Examples of Toeplitz Transformations

We give some examples of f ’s implementing
(

z1 z2
z0 z1

) (
a1

a0

)
:

(
0 1
1 0

)(
z1 z2
z0 z1

)(
a0

a1

)

=
(

1 1 0
0 1 1

) ⎛
⎝

a0 0 0
0 a0 + a1 0
0 0 a1

⎞
⎠

⎛
⎝

1 −1 0
0 1 0
0 −1 1

⎞
⎠

⎛
⎝

z0
z1
z2

⎞
⎠

=
(

1 1 1
1 ω3 ω2

3

) ⎛
⎝

a0 + a1 0 0
0 a0 + ω3a1 0
0 0 a0 + ω2

3a1

⎞
⎠F−1

3

⎛
⎝

z0
z1
z2

⎞
⎠

=
(

1 1 1 1
1 ω4 ω2

4 ω3
4

)
⎛
⎜⎜⎝

a0 + a1 0 0 0
0 a0 + ω4a1 0 0
0 0 a0 + ω2

4a1 0
0 0 0 a0 + ω3

4a1

⎞
⎟⎟⎠F−1

4

⎛
⎜⎜⎝

z0
z1
z2
0

⎞
⎟⎟⎠

where F−1
k =

(
F−1

k

)T
is the inverse of the cyclic size-k FFT.

References

1. ARM: Cortex-A72 Software Optimization Guide (2015). https://developer.arm.
com/documentation/uan0016/a/

https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/uan0016/a/

196 H.-T. Chen et al.

2. ARM: Arm Architecture Reference Manual, Armv8, for Armv8-A architecture pro-
file (2021). https://developer.arm.com/documentation/ddi0487/gb/?lang=en

3. Becker, H., Hwang, V., Kannwischer, M.J., Yang, B.Y., Yang, S.Y.: Neon NTT:
faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022(1), 221–244 (2022). https://tches.iacr.org/
index.php/TCHES/article/view/9295

4. Bernstein, D.J.: Multidigit multiplication for mathematicians (2001). https://cr.
yp.to/papers.html#m3

5. Bernstein, D.J., Yang, B.Y.: Fast constant-time GCD computation and modular
inversion. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 340–398 (2019).
https://tches.iacr.org/index.php/TCHES/article/view/8298

6. Chen, C., et al.: NTRU. Submission to the NIST Post-Quantum Cryptography
Standardization Project [15] (2020). https://ntru.org/

7. Cook, S.A., Aanderaa, S.O.: On the minimum computation time of functions.
Trans. Am. Math. Soc. 142, 291–314 (1969)

8. Hwang, V.B.: Case Studies on Implementing Number-Theoretic Transforms with
Armv7-M, Armv7E-M, and Armv8-A. Master’s thesis (2022). https://github.com/
vincentvbh/NTTs with Armv7-M Armv7E-M Armv8-A

9. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m [x] on
Cortex-M4 to speed up NIST PQC candidates. In: Deng, R., Gauthier-Umana, V.,
Ochoa, M., Yung, M. (eds.) Applied Cryptography and Network Security. ACNS
2019. LNCS, vol. 11464, pp. 281–301. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 14

10. Kannwischer, M.J., Schwabe, P., Stebila, D., Wiggers, T.: PQClean. https://
github.com/PQClean

11. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by auto-
matic computers. In: Doklady Akademii Nauk, vol. 145, no. 2, pp. 293–294 (1962)

12. Írem Keskinkurt Paksoy, Cenk, M.: TMVP-based Multiplication for Polynomial
Quotient Rings and Application to Saber on ARM Cortex-M4. Cryptology ePrint
Archive (2020). https://eprint.iacr.org/2020/1302

13. Írem Keskinkurt Paksoy, Cenk, M.: Faster NTRU on ARM Cortex-M4 with
TMVP-based multiplication (2022). https://eprint.iacr.org/2022/300

14. Nguyen, D.T., Gaj, K.: Optimized Software Implementations of CRYSTALS-
Kyber, NTRU, and Saber Using NEON-Based Special Instructions of ARMv8
(2021). third PQC Standardization Conference

15. NIST, the US National Institute of Standards and Technology: Post-quantum cryp-
tography standardization project. https://csrc.nist.gov/Projects/post-quantum-
cryptography

16. Sanal, P., Karagoz, E., Seo, H., Azarderakhsh, R., Kermani, M.M.: Kyber on
ARM64: compact implementations of Kyber on 64-bit ARM Cortex-A processors.
Cryptology ePrint Archive, Report 2021/561 (2021). https://eprint.iacr.org/2021/
561

17. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-
tiplication of integers. In: Soviet Mathematics Doklady, vol. 3, no. 4, pp. 714–716
(1963)

18. Winograd, S.: Arithmetic Complexity of Computations, vol. 33. Siam, New Delhi
(1980)

https://developer.arm.com/documentation/ddi0487/gb/?lang=en
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://cr.yp.to/papers.html#m3
https://cr.yp.to/papers.html#m3
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://ntru.org/
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://doi.org/10.1007/978-3-030-21568-2_14
https://doi.org/10.1007/978-3-030-21568-2_14
https://github.com/PQClean
https://github.com/PQClean
https://eprint.iacr.org/2020/1302
https://eprint.iacr.org/2022/300
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://eprint.iacr.org/2021/561
https://eprint.iacr.org/2021/561

	Algorithmic Views of Vectorized Polynomial Multipliers – NTRU
	1 Introduction
	1.1 Contributions
	1.2 Code
	1.3 Structure of This Paper

	2 Preliminaries
	2.1 Polynomials in NTRU
	2.2 Cortex-A72

	3 Polynomial Multiplications
	3.1 The Chinese Remainder Theorem for Polynomial Rings
	3.2 Toom–Cook (TC) and Karatsuba
	3.3 Enlarging Coefficient Rings

	4 Toeplitz Matrix–Vector Product
	4.1 Module and Associative Algebra
	4.2 Matrix–Vector Products
	4.3 Toeplitz Matrices
	4.4 Small-Dimensional Cases
	4.5 Large-Dimensional Toeplitz Transformation

	5 Implementations
	5.1 Toom-Cook
	5.2 Toeplitz-TC

	6 Results
	6.1 Benchmark Environment
	6.2 Performance of Vectorized Polynomial Multiplications
	6.3 Performance of Schemes

	A Proof for the Toeplitz Transformation
	B Examples of Toeplitz Transformations
	References

