
Efficient Multiplication of Somewhat
Small Integers Using Number-Theoretic

Transforms

Hanno Becker1(B), Vincent Hwang2,3(B), Matthias J. Kannwischer3(B),
Lorenz Panny3(B), and Bo-Yin Yang3(B)

1 Arm Research, Cambridge, UK
hanno.becker@arm.com

2 National Taiwan University, Taipei, Taiwan
vincentvbh7@gmail.com

3 Academia Sinica, Taipei, Taiwan

matthias@kannwischer.eu, lorenz@yx7.cc, by@crypto.tw

Abstract. Conventional wisdom purports that FFT-based integer mul-
tiplication methods (such as the Schönhage–Strassen algorithm) begin
to compete with Karatsuba and Toom–Cook only for integers of several
tens of thousands of bits. In this work, we challenge this belief, lever-
aging recent advances in the implementation of number-theoretic trans-
forms (NTT) stimulated by their use in post-quantum cryptography. We
report on implementations of NTT-based integer arithmetic on two Arm
Cortex-M CPUs on opposite ends of the performance spectrum: Cortex-
M3 and Cortex-M55. Our results indicate that NTT-based multiplication
is capable of outperforming the big-number arithmetic implementations
of popular embedded cryptography libraries for integers as small as 2048
bits. To provide a realistic case study, we benchmark implementations
of the RSA encryption and decryption operations. Our cycle counts on
Cortex-M55 are about 10× lower than on Cortex-M3.

Keywords: FFT-based multiplication · NTT · Arm processors · RSA

1 Introduction

The development of fast algorithms for arithmetic on big numbers is a well-
established field of research. As with any computational problem, its study can
be dissected into two parts: First, the analysis of the asymptotic complexity.
Second, the analysis of concrete complexity for a chosen size of input. The
results are often different: An algorithm may have inferior asymptotic perfor-
mance but superior practical performance for a certain input size. The analysis
of the “crossover point”, that is, the input size at which an asymptotically faster
algorithm also becomes practically faster, is an important question when mov-
ing from theory to practice. The present paper is about the evaluation of such a
crossover point in the case of big number arithmetic on microcontrollers.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C.-M. Cheng and M. Akiyama (Eds.): IWSEC 2022, LNCS 13504, pp. 3–23, 2022.
https://doi.org/10.1007/978-3-031-15255-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15255-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-15255-9_1

4 H. Becker et al.

The multiplication of big numbers can be performed in a variety of ways
of decreasing asymptotic complexity and (unsurprisingly) increasing sophistica-
tion. At the base, so-called “schoolbook multiplication” approaches calculate the
product of two n-limb numbers (a0, . . . , an−1) and (b0, . . . , bn−1) by computing
and accumulating all n2 subproducts aibj . While from a practical perspective, a
lot of research has been conducted on the optimal concrete strategy, they all lead
to an asymptotic complexity of O(n2). Next, the Karatsuba method [KO63] and
its generalization by Toom–Cook [Too63] lower the asymptotic complexity to
O(n1+s) for varying 0 < s < 1; for example, Karatsuba’s method of computing

(a0 + ta1)(b0 + tb1) = a0b0 + t2a1b1 + t((a0 + a1)(b0 + b1) − a0a0 − a1b1)

leads to an asymptotic complexity of O(nlog2 3) ⊆ O(n1.585). Moving further,
starting with the famous Schönhage–Strassen algorithms [SS71], FFT-based inte-
ger multiplications achieve asymptotic complexity O(n log n log log n) and better,
and the long conjectured (and presumably final) complexity of O(n log n) was
only recently achieved in [HH21].

Despite its far superior asymptotic complexity, however, NTT-based integer
multiplication is not used for number ranges found in contemporary public-key
cryptography: In fact, quadratic multiplication strategies appear to be the most
prominent choice in those contexts. At the same time, the past years have seen
significant research and progress regarding fast implementation of the NTT,
stimulated by their prominence in post-quantum cryptography. The primary
objective of this paper is to evaluate how those optimizations affect the practical
performance and viability of NTT-based big number arithmetic.

1.1 Results

We find that the crossover point for viability of NTT-based modular arithmetic
is at around 2048 bits. More precisely, we compare to modular arithmetic imple-
mentations found in the popular TLS libraries BearSSL and Mbed TLS, and
find that our NTT-based implementation outperforms both by 1.3×–2.2× on
Cortex-M3 and by 1.8×–6.4× on Cortex-M55. We also notice that there is con-
siderable optimization potential for the schoolbook multiplications in BearSSL
and Mbed TLS—when this is implemented, 2048-bit NTT-based modular multi-
plication is only slightly better (1.1×) than schoolbook multiplication on Cortex-
M3, and essentially equal on Cortex-M55. When moving to 4096-bit multipli-
cation, however, our NTT-based implementation outperforms even those highly
optimized schoolbook multiplications. We thus think that NTT-based modular
arithmetic should be considered from 2048-bit onwards.

Software: Our Cortex-M3 code is available at https://github.com/ntt-int-mul/
ntt-int-mul-m3. Our Cortex-M55 code will be made available soon at https://
gitlab.com/arm-research/security/pqmx.

Related Work. Present-day general-purpose computer algebra systems switch
to FFT-based multiplication only for very large numbers. For example,

https://github.com/ntt-int-mul/ntt-int-mul-m3
https://github.com/ntt-int-mul/ntt-int-mul-m3
https://gitlab.com/arm-research/security/pqmx
https://gitlab.com/arm-research/security/pqmx

Efficient Multiplication of Somewhat Small Integers Using NTTs 5

GMP [GMP] uses Schönhage–Strassen when multiplying numbers with more
than 3000–10000 limbs (i.e., at least 96 000 bits) depending on the platform.1

However, when tailoring an implementation to a specific integer size and plat-
form, the crossover point appears to be lower. Previous work on implementing
RSA using Schönhage–Strassen [GKZ07] in hardware concluded that it can only
outperform Karatsuba and Toom–Cook for key sizes larger than 48 000 bits.
[Gar07] reports similar findings: It estimates Schönhage–Strassen to be competi-
tive only for RSA key sizes above 217 ≈ 131 000 bits, several orders of magnitude
beyond typical RSA parameter choices. To the best of our knowledge, there
is no competitive implementation of real-world RSA using FFT-based integer
multiplication.

Other Work. In addition to improvements to the efficiency of number-theoretic
transforms, post-quantum cryptography has stimulated research into efficient
schoolbook multiplication strategies for integers of a few hundred bits, as found in
elliptic-curve or isogeny cryptography. It would be interesting to study and com-
pare the performance of RSA based on the combination of Karatsuba and those
new quadratic multiplication algorithms. Another avenue for further research is
the evaluation of NTT-based arithmetic on high-end processors.

2 Preliminaries

2.1 RSA

The RSA (Rivest–Shamir–Adleman) cryptosystem [RSA78] was the most com-
mon public-key cryptosystem for decades and remains in widespread use, pri-
marily with keys of 2048, 3072, or 4096 bits. We briefly recap how it works.

During key generation, a semiprime N = pq with p and q of roughly equal
size is generated. The public key is N and a small e to which power it is easy to
raise, commonly e = 216 +1. We have xkφ(N)+1 ≡ x (mod N) for all x, k, where
φ(N) = (p − 1)(q − 1) is the totient function. With d ≡ e−1 (mod φ(N)), the
public map x �→ xe mod N is then inverted by the secret map y �→ yd mod N ,
the secret key being d. Both encryption and signing primitives can be constructed
based on this pair of public/private maps.

The private map can be evaluated using the Chinese Remainder Theorem
(CRT) method, computing x = yd mod N by interpolating x ≡ yd mod (p−1)

(mod p) and x ≡ yd mod (q−1) (mod q). Modular multiplications are commonly
implemented using Montgomery multiplication, and modular exponentiation
uses windowing methods (see Sect. 3).

2.2 FFT-Based Integer Multiplication

Numerous versions of FFT-based integer multiplications are known, but their
blueprint is typically the following: First, find an FFT-based quasi-linear time
1 https://gmplib.org/manual/FFT-Multiplication.

https://gmplib.org/manual/FFT-Multiplication

6 H. Becker et al.

multiplication algorithm in a suitable polynomial ring. Second, find a means to
reduce integer multiplication to the chosen kind of polynomial multiplications.

Starting with Schönhage–Strassen and Pollard [SS71,Pol71], numerous
instantiations of this idea have been developed, using polynomials over C, finite
fields Fq, integers modulo Fermat numbers Z/(22

n

+ 1)Z, and also multivariate
polynomial rings [HH21]. Here, we focus on NTT-based integer multiplication
using polynomials in Zq[X]/(Xn−1) with q a prime or bi-prime, which is close to
[Pol71]. While variable-size integer multiplication requires recursive application
of the above principle, it is not necessary for the integer sizes considered here.

Section 2.3 discusses how the NTT yields a quasi-linear multiplication in
Zq[X]/(Xn − 1). We now explain the reduction from integer multiplication.

To turn a multiplication of a, b ∈ Z into a multiplication in Zq[X]/(Xn − 1),
one first lifts a, b to integer polynomials A,B ∈ Z[X] along f : Z[X] →
Z,X �→ 2�, the canonical choice being the radix-2� presentations of a, b. Since
f(AB) = ab, it suffices to compute AB ∈ Z[X]. To do so, one chooses q and
n such that AB ∈ Z[X] is a canonical representative for the finite quotient
Zq[X]/(Xn − 1), that is, it is of degree < n with coefficients in {0, . . . , q − 1}.
Under these circumstances, one can then uniquely recover AB from its image
g(AB) = g(A)g(B) under g : Z[X] → Zq[X]/(Xn − 1). We have thus reduced
the computation of ab in Z to that of g(A)g(B) in Zq[X]/(Xn − 1).

2.3 Number-Theoretic Transforms

The number-theoretic transform (NTT) is a generalization of the discrete Fourier
transform, replacing the base ring C of the complex numbers by other commu-
tative rings, commonly finite fields Fq. In the present context, its value lies in
the fact that it transforms convolutions into pointwise products in quasi-linear
time, reducing the complexity of convolutions from quadratic to quasi-linear.

Definition. We’re working over Zq := Z/qZ for odd q and fix ω ∈ Zq an nth
root of unity. We write [n] := {0, 1, . . . , n − 1}. The NTT [Für09,HH21] is the
canonical projection Zq[x]/〈xn − 1〉 → ∏

i Zq[x]/
〈
x − ωi

〉
, which under the iso-

morphism Zq[x]/
〈
x − ωi

〉 ∼= Zq,a(x) �→ a(ωi) can also be described as

NTT : Zq[x]/〈xn − 1〉 → Z
n
q , NTT(a) :=

(
a(1),a(ω), . . . ,a(ωn−1)

)
.

If ω is a principal nth root of unity and n is invertible in Zq, this constitutes
a ring isomorphism NTT : Zq[x]/〈xn − 1〉 ∼= Z

n
q ; in particular, we have ab =

NTT−1 (NTT(a) ·Π NTT(b)), where ·Π is the pointwise multiplication in Z
n
q .

Fourier Inversion. Domain and codomain of the NTT can be identified via
the isomorphism of Zq-modules (not rings) ϕ : Zq[x]/〈xn − 1〉 ∼= Z

n
q , xi ↔ ei

(where ei is the ith unit vector). This renders the resulting NTT : Z
n
q → Z

n
q

close to an involution: NTT2 = muln ◦ neg, where muln : Zn
q → Z

n
q is pointwise

multiplication with n and neg : Zn
q → Z

n
q sends ei to eneg(i) with neg(0) = 0

and neg(i) = n − i for i > 0 (we don’t distinguish between a permutation on

Efficient Multiplication of Somewhat Small Integers Using NTTs 7

[n] and the induced isomorphism on Z
n
q). Another way of saying this is that

NTT′ : Zq[x]/〈xn − 1〉 ∼= Z
n
q defined by NTT′(a) :=

(
a(1),a(ω−1), . . . ,a(ω−(n−1))

)

is, up to multiplication by n and application of ϕ, the inverse of NTT : Zq[x]/
〈xn − 1〉 ∼= Z

n
q . This is the Fourier Inversion Formula, and the curious reader

will find that it boils down to the orthogonality relations
∑

j ωij = n · δi,0.

Fast Fourier Transform. The NTT can be calculated using the Cooley–Tukey
(CT) FFT algorithm: For n = 2m, CT splits Zq[x]/

〈
x2m − ζ2

〉
into Zq[x]/

〈xm − ζ〉×Zq[x]/〈xm + ζ〉 via CT(a+xmb, ζ) = (a+ ζb, a− ζb) for a, b of degree
< m—this is called a CT butterfly. The idea can be applied recursively, and for
n = 2k we in particular obtain a map NTTCT : Zq[x]/〈xn − 1〉 ∼= Z

n
q which is equal

to bitrev ◦ NTT, where bitrev : [2k] → [2k] is the bitreversal permutation.
The CT strategy can also be applied for radices r = 2, performing one

splitting Zq[x]/〈xrm − ζr〉 ∼= ∏
i Zq[x]/

〈
xm − ωi

rζ
〉

at a time. When applied
recursively to a factorization n = r1 · · · rs, the resulting map NTTCT : Zq[x]/
〈xn − 1〉 ∼= Z

n
q agrees with σ(r1, . . . , rs) ◦ NTT, where σ(r1, . . . , rs) is given by

[n] ∼= [r1] × . . . × [rs]
reverse−−−−→ [rs] × . . . × [r1] ∼= [n]

where the first and last map are lexicographic orderings. Note that σ(2, . . . , 2) =
bitrev, and σ(r1, . . . , rs) is an involution only if (r1, . . . , rs) is a palindrome.

Inverse NTT. For the computation of NTT−1
CT , there are two approaches: First,

one can invert CT butterflies via Gentleman–Sande butterflies GS(a, b, ζ) =
(a + b, (a − b)ζ). Alternatively, one can leverage NTTCT = σ ◦ NTT and NTT−1 =
mul1/n◦NTT′ to compute NTT−1

CT = mul1/n◦NTT′◦σ−1 = mul1/n◦σ−1◦NTT′
CT◦σ−1.

If σ is an involution (e.g., if n = 2k), this is mul1/n ◦ σ ◦ NTT′
CT ◦ σ−1 and can

thus be implemented like NTTCT while implicitly applying the permutation σ;
this leads to the implementation of NTT−1

CT as presented in [Abd+22, Figure 1],
which does not require explicit permutations. For a general mixed-radix NTT,
however, σ is not an involution, and an explicit permutation by σ−2 is needed;
we avoid this via Good’s trick, as explained in the next section.

GS butterflies lead to exponential growth for an exponentially shrinking num-
ber of coefficients, while CT butterflies yield linear growth for all coefficients.
This impacts the amount and placement of reductions during NTT±1.

Good’s Trick. For n = rs with coprime r, s, another strategy to computing NTTn

is computing the bottom edge in the commutative diagram

Zq[x]/〈xn − 1〉 Z
n
q

Zq[u]/〈ur − 1〉 ⊗Zq
Zq[v]/〈vs − 1〉 Z

r
q ⊗Zq

Z
s
q

ui⊗vj↔xk

∼=
k≡i (mod r)
k≡j (mod s)

NTTω
n

NTTωe

r ⊗ NTTωf

s

e≡0 (mod s), e≡1 (mod r)
f≡1 (mod s), f≡0 (mod r)

ei⊗ej↔ek∼=
k≡i (mod r)
k≡j (mod s)

8 H. Becker et al.

This has two benefits: First, if r, s are prime powers then NTT±1
r/s can be computed

via CT as described above, avoiding non-involutive permutations. Second, fewer
twiddle factors are needed for the computation of NTTs ⊗ NTTr.

Incomplete NTTs. Denoting R := Zq[x]/〈xn − 1〉 and Ri := Zq[x]/
〈
x − ωi

〉
, the

NTT splitting NTT : R
∼=−−→ ∏

i Ri transfers to any R-algebra: If S is an R-
algebra, we have S ∼= S ⊗R R ∼= S ⊗R

∏
i Ri

∼= ∏
i S ⊗R Ri. The most common

example are incomplete NTTs: The ring S := Zq[y]/
〈
ynh − 1

〉
is an algebra over

its subring R := Zq[yh]/
〈
ynh − 1

〉 ∼= Zq[x]/〈xn − 1〉 to which the NTT applies,
and so S ∼= ∏

i S ⊗R Zq[yh]/
〈
yh − ωi

〉
=

∏
i Zq[y]/

〈
yh − ωi

〉
.

The benefits of using incomplete NTTs are: First, we only need an nth prin-
cipal root of unity to partially split Zq[y]/

〈
ynh − 1

〉
. Second, polynomial multi-

plication using incomplete NTTs and “base multiplication” in Zq[y]/
〈
yh − ωi

〉

may be faster than for full NTTs and base multiplication in Zq.
We use incomplete NTTs for all parameter sets—see below.

Fermat Number Transforms. The Fermat number transform (FNT) is a special
case of NTT where the modulus is a Fermat number Ft := 22

t

+ 1 [AB74]. For
the coefficient ring ZFt

, we can compute a size-n NTT if n divides 2t+2. If we
choose 2 to be the principal 2t+1th root of unity, then the twiddle factors for a
size-(t+1) Cooley–Tukey FFT are all powers of 2.

Since there are square roots for ±2, we can choose a principal 2t+2th root
of unity ω with ω =

√
2 and compute a size-2t+2 NTT [AB74]. Furthermore, if

Ft is a prime, then we can compute a size-22
t

NTT. Note that the only known
prime Fermat numbers are F0, . . . , F4.

2.4 Modular Reductions and Multiplications

(Refined) Barrett Reduction. Signed Barrett reduction approximates

a mod± q = a − q �a/q� = a − q
⌊
a R

q /R
⌉

≈ a − �a · �R/q� /R� =: bar� �
q,R(a),

where R = 2w is a power of 2 and �R/q� is a precomputed integer approximation
to R

q . The quality of the resulting approximation bar� �
q,R(a) ≈ a mod± q—and in

particular, the question of when it may in fact be an equality—depends on the
value of w, and two choices for w are common, as we now recall.

First, w = M where M ∈ {16, 32} is the word or half-word size bitlength,
allowing

⌊−
R

⌉
to be conveniently implemented using rounding high multiply

instructions. We call this the “standard” Barrett reduction.
Second, w = (M − 1) + �log2 q�, which is maximal under the constraint

that �R/q� is a signed M -bit integer: This choice leads to higher accuracy of the
approximation, but typically requires an additional instruction. We will hence-
forth call it the “refined” Barrett reduction. For standard Barrett reduction, both
�a� := 2

⌊
a
2

⌉
and �a� := �a� can be useful, while for refined Barrett reduction,

we always choose �a� = �a� because of its tighter bound |�a� − a| ≤ 1
2 .

Efficient Multiplication of Somewhat Small Integers Using NTTs 9

Note that both “standard” and “refined” Barrett reductions are already
known in the literature as Barrett reduction. We make this distinction for
introducing an extension of the signed Barrett multiplication introduced
by [Bec+22a].

(Refined) Barrett Multiplication. For two integers a, b and a modulus q, signed
Barrett multiplication [Bec+22a] approximates

ab mod± q = ab− q
⌊

ab
q

⌉
= ab− q

⌊
a bR

q /q
⌉

≈ ab−
⌊
a ·

�
bR
q

�
/R

⌉
q =: bar� �

q,R(a, b),

where again R = 2w is a power of 2 and �bR/q� is a precomputed integer
approximation to bR

q . Previously, only the choice w = M ∈ {16, 32} was con-
sidered. In analogy with refined Barrett reduction, we suggest to also consider
w = (M − 1)+ �log2 q�− �log2 |b|�, which again is maximal under the constraint
that �bR/q� is a signed M -bit integer. We call the resulting approximation to
ab mod± q the “refined” Barrett multiplication.

We summarize the quality and size of Barrett reduction and multiplication:

Fact 1. Let q ∈ N be odd and a, b ∈ Z with |a|, |b| < 2M−1 for M ∈ {16, 32}.
Moreover, let �−� : Q → Z be any integer approximation, i.e. |x − �x�| ≤ 1 for
all x ∈ Q, and put t mod� � q := t − q �t/q�.

Then for R := 2M we have |bar� �
q,R(a, b)| ≤ a(bR mod� � q)

R
+ R

2 .

Proof. [Bec+22a, Corollary 2] ��
Fact 2. Let q ∈ N be odd and a, b ∈ Z with |a|, |b| < 2M−1 for M ∈ {16, 32}.
Moreover, pick k ≥ 1 maximal s.t. ε := |�bR/q� − bR/q| ≤ 2−k. Finally, set
R := 2w for w := (M − 1) + �log2 q� − �log2 |b|�. Then:

If log2 |a| < (M − 1) − (�log2 |b|� − (k − 1)), then bar� �
q,R(a, b) = ab mod± q.

Restating Fact 2 in simple terms: Refined Barrett reduction (the special case
b = 1) yields canonical representatives for all inputs a with |a| < 2M−1. For
a refined Barrett multiplication, the range of inputs for which bar� �

q,R(a, b) is
guaranteed to be canonical is narrowed by the bitwidth of b; however, this can
be compensated for by an exceptionally close approximation bR/q ≈ �bR/q�.
Proof of Fact 2. Setting δ := a �bR/q� /R−ab/q, it follows from the definition of ε
and k that |δ| ≤ |a|/2k+w. Since �−� changes its value only when crossing values

of the form { 2n+1
2 } for n ∈ Z, for

⌊
ab
q

⌉
and

⌊
a� bR

q �
R

⌉

=
⌊

ab
q + δ

⌉
to agree it is

sufficient to show that |δ| < min
{∣

∣
∣ 2n+1

2 − c
q

∣
∣
∣ | c, n ∈ Z

}
= 1

2q —the last equality
holds since q is odd. Refined Barrett multiplication is thus guaranteed to yield
the canonical representative of ab if |a|

2k+w < 1
2q , i.e. |a| < 2k+w−1

q . Plugging in
w = M − 1 + �log2 q� − �log2 |b|� and estimating q < 2�log2 |q|	+1, this follows
provided log2 |a| < (M − 1) − (�log2 |b|� − (k − 1)), as claimed. ��

10 H. Becker et al.

Example 1. Let M = 32, q = 114826273, and b = 774. Then �log2 q� = 26 and
�log2 b� = 10, so w = 47. Moreover, ε := |�bR/q� − bR/q| satisfies ε < 2−11. Thus,
according to Fact 2, the refined Barrett multiplication bar±

q,R(−, b) for R := 247

does therefore yield canonical representatives for all inputs a with |a| < 231: The
exceptionally good approximation �bR/q� ≈ bR/q makes up for the size of b.

Montgomery Multiplication. The Montgomery multiplication [Mon85] of a, b
with respect to a modulus q and a 2-power R > q is defined as mont+q (ab) =
hi (a · b + q · lo (q′ · lo (a · b))) , providing a representative of abR−1 modulo q.
Here, q′ = −q−1 mod R, and lo and hi are extractions of the lower and upper
log2 R bits, respectively. Montgomery multiplication is defined and relevant for
both small-width modular arithmetic such as modular arithmetic modulo a 16-
bit or 32-bit prime, as well as large integer arithmetic as used, e.g., in RSA.

Multi-precision Montgomery Multiplication. Montgomery multiplication for big
integers is implemented iteratively: For a, b =

∑
i biBi, one computes a represen-

tative of abB−n by writing abB−n = . . . (ab2 + (ab1 + (ab0)B−1)B−1)B−1 . . . and
computing each x �→ (x + abi)B−1 using a Montgomery multiplication w.r.t. B.
Each such step involves the computation and accumulation of P = x+abi and of
Q = ((x+abi)0q′ mod B)p. If the products are computed separately, this is called
Coarsely Integrated Operand Scanning (CIOS) [KAK96]. If (x + abi)0q′ mod B
is computed first and then P + Q is computed in one loop, it is called Finely
Integrated Operand Scanning (FIOS).

Divided-Difference for Chinese Remainder Theorem (CRT). We compute poly-
nomial products modulo q1q2 by interpolating products modulo q1 and q2 using
the divided-difference algorithm for CRT [Chu+21]: Let q0, q1 be two coprime
integers and m1 := q−1

0 mod ±q1. For a system u ≡ u0 (mod q0), u ≡ u1

(mod q1) with |u0| < q0
2 , |u1| < q1

2 , we solve for u with |u| < q0q1
2 by computing:

u = u0 +
(
(u1 − u0)m1 mod ±q1

)
q0. (1)

2.5 Implementation Targets

We briefly explain our choice of implementation targets.

Cortex-M3. The Arm R© Cortex R©-M3 CPU is a low-cost processor found in a
wide range of applications such as microcontrollers, automotive body systems,
or wireless networking. It implements the Armv7-M architecture and features a
3-stage pipeline, an optional memory protection unit (MPU) and a single-cycle
32 × 32 → 32-bit multiplier with optional 1-cycle accumulation or subtraction.

We select the Cortex-M3 primarily for two reasons: First, it is a popular
choice of MCU for automotive hardware security modules (e.g. Infineon AURIX
TC27X). Second, its 32×32 → 64 long multiplication instructions smull, smlal,
umull, umlal have data-dependent timing and lead to timing side channels when

Efficient Multiplication of Somewhat Small Integers Using NTTs 11

used to process sensitive data. To avoid those, implementations need to use
single-width multiplication instructions mul, mla, and mls instead. We expect
this reduction of basic multiplication width to have a more significant impact on
the runtime of classical multiplication than on (quasi-linear) NTT-based multi-
plication. A goal of the paper is to evaluate this intuitive assessment.

Cortex-M55. The Cortex-M55 processor is the first implementation of the
Armv8.1-M architecture, with optional support for the M-Profile Vector Exten-
sion (MVE), or Arm R© Helium

TM
Technology. It features a 5-stage pipeline when

Helium is enabled, and except for some pairs of Thumb instructions, it is single
issue. In addition to the Helium vector extension, it supports the Low Overhead
Branch Extension, as well as tightly coupled memory (TCM) for both code and
data, with a total Data-TCM bandwidth of 128-bit/cycle, 64-bit/cycle for CPU
processing and 64-bit/cycle for concurrent DMA transfers. For a more extensive
introductions to both the Armv8.1-M architecture and the Cortex-M55 CPU,
we refer to [Bec+22b, Section 3] and the references therein.

We select the Cortex-M55 for the following reasons: First, due to its support
for SIMD vector processing, it is an exciting and powerful new implementation
target—the cryptographic capabilities of which are still to be explored. Second,
the authors are not aware of means to vectorize classical umaal-based multi-
plication strategies using MVE, while in contrast it has been demonstrated in
[Bec+22b] that the NTT is amenable for significant speedup using MVE. We are
thus curious to understand how a vectorized NTT-based integer multiplication
fares compared to classical umaal-based integer multiplication.

3 Implementations

3.1 High-Level Strategy

We implement Montgomery multiplication on top of NTT-based large inte-
ger multiplication, the latter as described in Sect. 2.2. This is in contrast to
CIOS/FIOS approaches for iterative Montgomery multiplication, which never
need to compute the double-width product of two large integers.

We pick R = 2�·n/2, which in contrast to R = 2N aligns taking the low and
high half w.r.t. R with taking the low resp. high halves of polynomials.

NTT-based large integer multiplication involves a considerable amount of
precomputation, such as chunking and NTT. Since each Montgomery multipli-
cation involves three integer multiplications—a ·b, t := q′ ·(a ·b)low, and p ·t—two
of which involve static factors p and p′, we buffer their precomputations. We also
make use of asymmetric multiplication [Bec+22a] and refer to the resulting NTT
and base multiplication as NTTheavy and basemullight.

Algorithm 1, Algorithm 2 and Appendix E describe our modular multiplica-
tion strategy in more detail. Appendix B explains how to perform the non-trivial
precomputation of p−1 mod R for our large choice of R.

12 H. Becker et al.

Algorithm 1:
Montgomery squaring using NTTs
Input: p, aR mod p,

p̂−1 = NTT(chk(p−1 mod 2k)),
p̂ = NTT(chk(p))

Output: c = a2R mod p

1: â = NTT(chk(a))
2: t = dechk(NTT−1(â ◦ â))
3: t̂ = NTT(chk(t mod 2k))
4: l = dechk(NTT−1(t̂ ◦ p̂−1))
5: l̂ = NTT(chk(l mod 2k))
6: r = dechk(NTT−1(l̂ ◦ p̂))
7: c = t

2k
− r

2k

8: if c < 0 then c = c + p
9: return c

Algorithm 2:
Montgomery multiplication using NTTs
Input: aR mod p, bR mod p

p̂−1 = NTT(chk(p−1 mod 2k)),
p̂ = NTT(chk(p))

Output: c = a · b · 2−k mod p

1: â = NTT(chk(a))
2: b̂ = NTT(chk(b))
3: t = dechk(NTT−1(â ◦ b̂))
4: t̂ = NTT(chk(t mod 2k))
5: l = dechk(NTT−1(t̂ ◦ p̂−1))
6: l̂ = NTT(chk(l mod 2k))
7: r = dechk(NTT−1(l̂ ◦ p̂))
8: c = t

2k
− r

2k

9: if c < 0 then c = c + p
10: return c

3.2 Parameter Choices

Recall from Sect. 2.2 that the Schönhage–Strassen algorithm involves lifting N -
bit numbers to Z[X] along X �→ 2� and computing their product in Zq[X]/(Xn−
1) using the NTT. We now describe our choices of N, 	, n, q; they were found by
manually tailoring the algorithm to the given target architectures.

First, if we divide our inputs into 	-bit chunks, we need n ≥ 2
⌈

N
�

⌉
; otherwise,

we cannot lift from Zq[X]/(Xn − 1) back to Zq[X]. For performance, we also
want n so that NTT-based polynomial multiplication is fast, e.g., a 2-power.
Hence, we may deliberately choose n > 2

⌈
N
�

⌉
and pad with zeros when needed.

Secondly, the coefficients of the product of two dimension-(n/2) polynomials
with 	-bit coefficients are bounded by n

2 · 22�, so we need q ≥ n
2 · 22� to be able

to lift from Zq[X] back to Z[X]. However, we also need to pick q so that Zq

has a principal nth root of unity, as otherwise the NTT is not defined. We pick
q = q1q2 a bi-prime and compute modulo q1 and q2 separately via CRT; using
two half-size moduli maps to the available hardware multipliers better than a
single larger q. Table 1 presents our choices, and we explain them in detail now.

On the Cortex-M3, we use chunks of 	 = 11 bits, so
⌈

N
�

⌉
= 187 for N = 2048

and
⌈

N
�

⌉
= 373 for N = 4096, but pick slightly larger n = 384 > 2

⌈
N
�

⌉
for

N = 2048 and n = 768 > 2
⌈

N
�

⌉
for N = 4096 since both are dimensions

for which a fast NTT can be implemented. Next, we need q1q2 ≥ 192 · 222 for
N = 2048 and q1 · q2 ≥ 384 · 222 for N = 4096; we pick (q1, q2) = (12289, 65537)
for N = 2048, and (q1, q2) = (25601, 65537) for N = 4096. The Fermat prime
q2 = 65537 allows particularly fast NTT computation using the FNT, while the
other prime is chosen to be the smallest admissible prime for which a 128th
(resp. 256th) primitive root of unity exists.

Efficient Multiplication of Somewhat Small Integers Using NTTs 13

Table 1. Parameters

Cortex-M3

bits (N) chunking (�) poly length (n) NTT modulus q = q1 · q2
2048 11 bits 384 128 = 27 12289 · 65537
4096 11 bits 768 256 = 28 25601 · 65537

Cortex-M55

bits (N) chunking (�) poly length (n) NTT modulus q = q1 · q2
2048 22 bits 192 64 · 3 = 26 · 3 114 826 273 · 128 919 937
4096 22 bits 384 128 · 3 = 27 · 3 114 826 273 · 128 919 937

On the Cortex-M55, we use chunks of 	 = 22 bits, so
⌈

N
�

⌉
= 94 for N = 2048

and
⌈

N
�

⌉
= 187 for N = 4096, but again pick slightly larger n = 192 > 2

⌈
N
�

⌉

for N = 2048 and n = 384 > 2
⌈

N
�

⌉
for N = 4096 since those are NTT-

friendly dimensions. For q = q1q2, we pick 114 826 273 · 128 919 937 for both
N = 2048 and N = 4096. Those choices are motivated as follows: First, we have
q ≈ 253.7 > 251.58 ≈ 384

2 · 244. In fact, since we even have q > 4 · (3842 · 244),
we can recover the coefficients in the sum of two polynomial products as the
signed canonical representatives of their image in Zq. The former allows saving
one CRT during the Montgomery multiplication, while the latter means that we
don’t need a signed-to-unsigned conversion after the signed CRT. Second, q1, q2
are carefully chosen so that (q2 mod q1)−1 in Zq2 is amenable to refined Barrett
multiplication—in fact, since (q2 mod q1)−1 = 774, this is what we observed
in Example 1. Thirdly, both q1 − 1 and q2 − 1 are multiples of 96 and thus
support incomplete dimension-96 NTTs. Finally, q1, q2 < 227 are small enough
that during the dimension-96 NTTs, no explicit modular reduction is necessary.

3.3 Chunking and Dechunking

We need to convert between multi-precision integers and polynomials, which we
refer to as “chunking” chk() and “dechunking” dechk(). chk() takes an N -bit
multi-precision integer and splits it into n chunks of 	 bits each, viewed as the
coefficients of a polynomial. In other words, we lift along Z[X] → Z,X �→ 2�.
dechk() converts a polynomial to a multi-precision integer by evaluating the
polynomial at X = 2�. As the coefficients of polynomials may grow beyond 2�

during computation, this requires carrying through the entire polynomial and
packing into a multi-precision integer.

3.4 Modular Exponentiation and Table Lookup

For the private-key operations, we use square-and-multiply with Algorithms 1
and 2 to implement constant-time exponentiation with a fixed window size of

14 H. Becker et al.

w bits. This requires constant-time table lookups, and choosing the optimal w
depends on the relative costs of a modular multiplication compared to such
lookups: The cost of a lookup scales linearly in the table size 2w, whereas the
number of required multiplications only scales proportionally to 1/w. We have
determined that w = 6 is the fastest choice for both Cortex-M3 and Cortex-
M55 and both 2048 and 4096 bits. We note that memory consumption will be
an increasing concern as w grows, since the lookup table contains 2w entries—
exponentially large in w. In turn, reducing w will incur only a mild performance
penalty while allowing for a significant reduction in the table size.

It may seem at first that storing the table entries in NTT domain should be
preferable. However, the much larger size of elements in NTT domain results in
drastically slower table lookups, which in our implementation clearly outweighs
the cost of transforming to NTT domain on the fly after each load. Thus, our
implementation stores the table entries as integer values.

For the public-key operation, we use a straightforward square-and-multiply
for the fixed public exponent 216+1 which is overwhelmingly common in practice.

3.5 Implementation Details for Cortex-M3

Our Cortex-M3 NTT implementation relies on a code generator written in
Python, featuring a bounds checker which determines when it should insert
reductions, and which aborts if it cannot guarantee the correctness of the com-
putation. The result is a set of fully unrolled assembly implementations of NTT,
inverse NTT, base multiplication and squaring, for configurable moduli.

The code generator uses the same high-level structure for FNTs and “generic”
NTTs, the main difference being in the reductions. The generator also recog-
nizes multiplications by power-of-two constants and converts them to shifts when
appropriate; this is one of the main optimizations employed by FNTs.

Number-Theoretic Transforms. We use incomplete NTTs of lengths 384 = 27 · 3
and 768 = 28 · 3. Both NTTs are implemented for the prime moduli q1 = 12289
(q1 = 25601) and q2 = 65537, which by CRT correspond to a single NTT of the
same length modulo q1 · q2. We use CT butterflies for the forward NTT and GS
butterflies for the inverse. Layers are merged as appropriate2 to eliminate unnec-
essary store-load pairs. The base multiplication is a straightforward polynomial
multiplication in a ring of the form Zq[X]/(X3−ζ). The CRT computation after
the inverse NTTs is applied to each coefficient separately and follows Eq. 1.

“General” Number-Theoretic Transform. For most moduli including q1 = 12289
and q1 = 25601, we use a combination of (signed) Montgomery multiplication
(Appendix A, Algorithm 4) and (signed) Barrett reductions (Appendix A, Algo-
rithm 3). The Barrett reduction comes in two variants, the difference consisting

2 The layers are merged as 4 + 3 resp. 4 + 2 + 2 in the forward NTTs, exploiting that
the upper half of the input coefficients are zero, and 3 + 2 + 2 resp. 3 + 3 + 2 in the
inverse NTTs. Register pressure prohibits more aggressive merging.

Efficient Multiplication of Somewhat Small Integers Using NTTs 15

in the optional addition of R/2 before the right shift. Skipping the addition is
faster, but results in worse reduction quality.

Fermat Number Transform. For the Fermat prime q2 = 216 + 1 = 65537, we use
variants of the “FNT reduction” shown in Appendix A, Algorithm 5. Depending
on the desired reduction quality, the algorithm is either applied (1) as written,
or (2) with its input offset by 215 and the output correspondingly offset by −215,
or (3) followed by a conditional subtraction of 216 + 1 if the output is > 215.
Method (2) produces a representative in {−216 +1, 216 − 1}, while the output of
method (3) is a canonical symmetric representative, i.e., lies in {−215, ..., 215}.
Methods (2) and (3) are equally fast if the constant 215 can be kept in a low
register throughout. If register pressure renders this undesirable, method (2) pro-
vides a convenient “intermediate” solution between the very fast FNT reduction
and the canonical symmetric reduction.

Constant-Time Lookup. We use predicated moves to extract the desired table
entry in a “striding” fashion: For each slice of four 32-bit words, the respec-
tive part of each table entry is loaded and conditionally moved into a set of
target registers using a itttt eq; moveq; moveq; moveq; moveq instruction
sequence. The target registers are stored after processing all entries. Compared
to the alternative of traversing the table entry by entry, this finalizes each output
word immediately, and no partial outputs have to be stored and reloaded.

3.6 Implementation Details for Cortex-M55

Pipeline Efficiency. As explained in [Bec+22b], Cortex-M55 is a dual-beat imple-
mentation of MVE; that is, most MVE instructions execute over two cycles. To
still achieve a Instructions per Cycle (IPC) rate of more than 0.5 without costly
dual-issuing logic, Cortex-M55 supports instruction overlapping for neighboring
vector instructions, provided they use different execution resources. The balance
and ordering of instructions is therefore crucial for performance. We find that all
our core subroutines have a good balance between load/store, addition and mul-
tiplication instructions and can be carefully arranged to maximize instruction
overlapping, achieving an IPC > 0.9. Table 5 provides details.

Number-Theoretic Transform. We implement incomplete NTTs of degree 96 =
3 · 32 and 192 = 3 · 64 via Good’s trick, using CT butterflies and Barrett multi-
plication throughout. Algorithm 6 is a translation of Barrett multiplication into
MVE. No explicit modular reductions are necessary during NTT or NTT−1, as we
confirm using a script tracking the bounds of modular representative throughout
the NTT, applying Fact 1 repeatedly.

Base Multiplication. The incomplete NTTs leave us with base multiplications in
rings of the form Zq[X]/(X4 − ζ) with a < 32-bit prime q, which we implement
essentially using the method of [Bec+22b]: A polynomial a = a0+a1X +a2X

2+

16 H. Becker et al.

a3X
3 is first expanded into a sequence ã = (a0, . . . , a3, ζa0, . . . , ζa3), and 64-

bit representatives of the coefficients of a · b are computed as dot products of
(b3, b2, b1, b0) with length-4 subsequences of ã, using vmalaldav. Here, we instead
compute ã = 1

n (a0, . . . , a3, ζa0, . . . , ζa3), where n is the incomplete NTT degree,
taking care of the scaling by 1

n as part of the base multiplication.

CRT. We vectorize the divided-difference interpolation (1), producing chunked
outputs. We allow non-reduced inputs and compute canonical reductions u′

0 of
u0 and of (u1−u′

0)m1 as part of the CRT rather than at the end of NTT−1. For the
computation of (u1−u′

0)m1, we use refined Barrett multiplication, leveraging our
choice of primes. The long multiplication ((u1 − u′

0)m1 mod ±q1) q0 is computed
via vmul[h], aligned to the 2�-boundary via (a, b) �→ (a mod 2�, b·232−�+

⌊
a/2�

⌋
)

(note |bi| < 2
52.7�−32 = 221, so |210bi| < 231), and the low part added to u′
0.

This results in a non-canonical chunked presentation of the CRT interpolation
with 32-bit values, which are finally reduced to < 2� + 232−� = 222 + 210 via
ai �→ (ai mod 2�) +

⌊
ai−1/2�

⌋
. We found that the slight non-canonicity of the

coefficients does not impact functional correctness, while enabling vectorization
of the above routine—a perfect reduction, in turn, is inherently sequential.

Constant Time Lookup. In contrast to Cortex-M3 we do not use predicated move
operations: A block of loads followed by a block of predicated moves allows for
only very little instruction overlapping. Instead, we use load-multiply-accumulate
sequences with secret constant 0/1 for the conditional moves, achieving very good
instruction overlapping. Overall, we obtain a constant-time lookup of 5184 cycles
for a table of 8192-bytes—26% over the theoretical minimum of 8192/2 cycles
necessary to load each table entry once with a 64-bit data path. See Sect. C.

As our data resides in uncached Data-TCM, it is tempting to consider a plain
load for a constant time lookup. We strongly advise against this: While access to
D-TCM is typically single-cycle, it’s not in general: On Cortex-M55 a D-TCM
load with secret address could happen concurrently with a DMA transfer and
trigger a memory bank conflict depending on the addresses being loaded. While
this particularly issue could be circumvented in our present context, it might be
problematic on future microarchitectures, and it appears prudent to simply stick
to the principle that memory access patterns should not rely on secret data.

4 Results

4.1 Benchmark Environment

Cortex-M3. We use the STM32 Nucleo-F207ZG with the STM32F207ZG
Cortex-M3 core with 128 kB RAM and 1 MB flash.We clock the Cortex-M3
at 30 MHz (rather than the maximum frequency of 120 MHz) to void having
any flash wait states when fetching code or constants from flash. We place the
stack in SRAM1 (112 kB) only since it results in slightly better performance.
We use libopencm33 and some hardware abstraction code is taken from pqm34.
3 https://github.com/libopencm3/libopencm3.
4 https://github.com/mupq/pqm3.

https://github.com/libopencm3/libopencm3
https://github.com/mupq/pqm3

Efficient Multiplication of Somewhat Small Integers Using NTTs 17

Table 2. Performance of our NTTs and FNTs in cycles

Cortex-M3

(N, n) q NTT NTTheavy basemul basesqr basemullight NTT−1

(2048, 384)
12289 12 409 14 692 7 053 6 101 5 949 15 130

65537 7 635 9 631 7 181 6 488 5 563 11 090

(4096, 768)
25601 31 491 35 805 13 808 11 386 11 729 36 227

65537 19 892 23 697 14 062 12 160 10 957 25 015

Cortex-M55

(N, n) q NTT NTTheavy basemul basesqr basemullight NTT−1

(2048, 192)
114 826 273

814 1 441 1 500 – 880 900
128 919 937

(4096, 384)
114 826 273

2 027 3 230 2 894 – 1 696 2 195
128 919 937

We use the SysTick counter for benchmarking. We use arm-none-eabi-gcc ver-
sion 11.2.0 with -O3.

Cortex-M55. We make use of the Arm MPS3 FPGA prototyping board with an
FPGA model of the Cortex-M55r1 (AN552). Both the prototyping board and
the FPGA model are publicly available5. Qemu supports a previous revision of
the image (AN547) and can be used for running our code as well. However, for
meaningful benchmarks, the FPGA board is required. We make use of the tightly
coupled memory for code (ITCM) and data (DTCM). The core is clocked at the
default frequency of 32 MHz. We use the PMU cycle counter for benchmarking.
We use arm-none-eabi-gcc version 11.2.0 with -O3.

4.2 NTT and FNT Performance

Table 2 contains the cycle counts for our core transformations. For the Cortex-
M3, we implement four different transforms using specialized code for each com-
bination of size and modulus. This allows us to minimize the number of explicit
modular reductions taking into account the size of the modulus and its twiddles,
and also to have a much faster FNT (modulo 65537) than the NTTs modulo
12289 and 25601. For the Cortex-M55 and a given size, the same code is used
for both moduli with different precomputed constants; since no explicit modu-
lar reductions are required, we do not see prime-specific optimization potential.
Base squaring and multiplication are the same, as we do not see optimization
potential for squaring.
5 https://developer.arm.com/tools-and-software/development-boards/fpga-prototypi

ng-boards/download-fpga-images.

https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/download-fpga-images
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/download-fpga-images

18 H. Becker et al.

Table 3. Performance of modular multiplication, squaring, exponentiation in
cycles. expmodpublic is a modular exponentiation with the exponent 65537.
expmodprivate is a modular exponentiation with a private n-bit exponent.

Cortex-M3

n mulmod sqrmod expmodpublic expmodprivate

This work

2048

220 047 196 830 4 227 473 494 923 435

This work (FIOS) 234 041 – 4 912 705 543 648 872

BearSSL [Bear] 283 038 – 18 350 210 718 347 177

This work

4096

510 708 454 128 9 752 690 2 250 748 647

This work (FIOS) 926 523 – 19 458 326 4 228 661 467

BearSSL [Bear] 1 102 151 – 70 443 207 5 505 856 187

Cortex-M55

n mulmod sqrmod expmodpublic expmodprivate

This work

2048

21 330 19 701 389 482 50 085 366

This work (FIOS) 20 260 – 426 707 50 683 718

MbedTLS [Mbed] 41 443 – 884 416 108 441 240

BearSSL [Bear] 83 517 – 5 400 650 217 123 645

This work

4096

47 660 43 620 861 450 218 110 707

This work (FIOS) 73 316 – 1 540 685 358 080 308

MbedTLS [Mbed] 152 371 – 3 223 797 755 391 521

BearSSL [Bear] 328 801 – 21 254 533 1 6468̇34 048

4.3 Modular Arithmetic: Multiplication, Squaring, Exponentiation

Table 3 presents timings for our modular arithmetic routines.
For Cortex-M3, we compare with BearSSL [Bear] (v0.6, i15 implementation)

which to our knowledge is the only library claiming to be constant-time on the
Cortex-M3. We also consider a handwritten FIOS implementation (Sect. 2.4).

On Cortex-M55, we compare to BearSSL v0.6 (i31 implementation), to
Mbed TLS [Mbed] v3.1.0, and to our own handwritten FIOS implementation.
The BearSSL implementation compiles down to umlal, while the Mbed TLS
implementation uses CIOS (Sect. 2.4) with umaal-based inline assembly.

We find that our implementations outperform Mbed TLS and BearSSL sig-
nificantly for both 2048-bit and 4096-bit parameters. Moreover, for Cortex-M3,
our NTT-based implementation is also slightly faster than the handwritten FIOS
implementation for 2048-bit, and considerably faster for 4096-bit.

Somewhat surprisingly, the umaal-based handwritten FIOS is much faster than
the umaal-based CIOS in Mbed TLS, and on par with our NTT-based implementa-
tion for 2048-bit. For 4096-bit, however, the NTT-based implementation prevails.

Efficient Multiplication of Somewhat Small Integers Using NTTs 19

The optimization potential between umaal-based FIOS and CIOS lies within mem-
ory accesses: Mbed TLS’ CIOS assembly does not leverage the 64-bit data path of
Cortex-M55, and merging of loops in FIOS also saves accesses. We reported this
optimization potential to the Mbed TLS team.6

Figure 1 shows the distribution of cycles spent in one modular multiplication.

36%

36%

18%

7%
3%

Cortex-M3, 2048 bits

40%

36%

15%

6%
3%

NTT
INTT
base
CRT
other

Cortex-M3, 4096 bits

36%

25%

24%
14%

1%

Cortex-M55, 2048 bits

39%

27%

21%

12%

1%

Cortex-M55, 4096 bits

Fig. 1. Clock cycles spent on the subroutines of a single modular multiplication.

A Reduction Algorithms for Cortex-M3 and Cortex-M55

Algorithm 3: (log2 R)-bit Barrett
reduction on Cortex-M3.
Input: a = a
Output: a = a mod± q

1: mul t, a, �R/q�
2: (optional) add t, t, #(R/2)
3: asr t, t, #log2 R

4: mls a, t, q, a

Algorithm 4: 16-bit Montgomery
multiplication on Cortex-M3.
Input: (a, b) = (a, b216 mod± q)
Output: a = ab mod± q

1: mul a, a, b

2: mul t, a, −q−1 mod± 216

3: sxth t, t

4: mla a, t, q, a

5: asr a, a, #16

6 See https://github.com/ARMmbed/mbedtls/issues/5666
and https://github.com/ARMmbed/mbedtls/issues/5360.

https://github.com/ARMmbed/mbedtls/issues/5666
https://github.com/ARMmbed/mbedtls/issues/5360

20 H. Becker et al.

Algorithm 5: FNT reduction on
Cortex-M3.
Input: a = a
Output: a = a mod± 65537 ∈
[−32767, 98303]

1: ubfx t, a, #0, #16

2: sub a, t, a, asr#16

Algorithm 6: Barrett multiplication
on Cortex-M55.

Input: (a, b, b’) =

(
a, b,

�b232/q�2
2

)

Output: a = ab mod± q

1: vmul.s32 l, a, b

2: vqrdmulh.s32 h, a, b’

3: vmla.s32 l, h, q

B On Precomputing the Montgomery Constant

Montgomery multiplication (see Sect. 2.4) requires the precomputation of
q−1 mod R. When implementing RSA via “large” Montgomery multiplication,
rather than a FIOS approach, this means that we need to precompute n−1 mod R
for encryption and p−1 mod R and q−1 mod R for decryption. For decryption this
can be computed as a part of key generation and stored as a part of the secret
key. For encryption, however, it needs to be computed online.

Modular inversion x−1 mod 2r can be performed using “Hensel lifting”: If
xy − 1 = 2ka, so that y is an inverse to x modulo 2k, then y′ = 2y −x2y satisfies
xy′ − 1 = −(xy − 1)2 = 22ka2, and hence y′ is an inverse of x modulo 22k.
This yields x−1 mod 2k after O(log k) iterations. One may observe that this is
the sequence of approximate solutions to xy = 1 for x via the Newton–Raphson
method in the 2-adic integers.

We prototyped Hensel-lifting to assess its relative cost compared to the mod-
ular exponentiation; we did not seek a fully optimized version. On the Cortex-M3
we implement both a variable-time variants using umlal for encryption and a
constant-time variant using mla for key generation. For the Cortex-M55, we
achieve the best performance using umaal. We list the performance in Table 4.
We see that already a basic implementation has only a small performance over-
head compared to an exponentiation (e.g., < 5% for RSA-4096).

Table 4. Performance of Hensel lifting; numbers for RSA-4096 in bold.

k Cortex-M3 Cortex-M55

mla (constant-time) umlal (variable-time) umaal (constant-time)

2112 85 337 45 326 12 430

4224 313 695 163 107 38 575

Efficient Multiplication of Somewhat Small Integers Using NTTs 21

C Table Lookup

Algorithm 7:
Conditional move on Cortex-M3
1: ldr.w a, [tbl, #4]

2: ldr.w b, [tbl, #8]

3: ldr.w c, [tbl, #12]

4: ldr.w d, [tbl], #16

5: cmp.n idx, #dst

6: itttt.n EQ

7: moveq.w a, A

8: moveq.w b, B

9: moveq.w c, C

10: moveq.w d, D

Algorithm 8:
Overlapping-friendly conditional
accumulation on Cortex-M55
1: cmp idx, #dst

2: cset mask, EQ // idx == dst

3: vldrw.u32 t, [tbl], #16

4: vmla.s32 A, t, mask

5: vldrw.u32 t, [tbl], #16

6: vmla.s32 B, t, mask

7: vldrw.u32 t, [tbl], #16

8: vmla.s32 C, t, mask

9: vldrw.u32 t, [tbl], #16

10: vmla.s32 D, t, mask

D Pipeline Efficiency of Cortex-M55 Implementation

Table 5 shows Performance Monitoring Unit (PMU) statistics for the
subroutines of our Cortex-M55 modular exponentiation (N = 4096).
We use ARM PMU CYCCNT, ARM PMU INST RETIRED, ARM PMU MVE INST RETIRED,
and ARM PMU MVE STALL for counting cycles, retired instructions, retired
MVE instructions, and MVE instructions causing a stall, respectively.
We derive the rate of Instructions per Cycle (IPC), as well as
ARM PMU MVE INST RETIRED/ARM PMU MVE STALL as a measure of the MVE over-
lapping efficiency. Despite most MVE instructions running for 2 cycles, instruc-
tion overlapping allows achieving an IPC > 0.9.

Table 5. Performance Monitoring Unit statistics for Cortex-M55 implementa-
tion.

Primitive Cycles Instructions
Instructions

per Cycle (IPC)

MVE

instructions

MVE

stalls

MVE

efficiency

NTT 2 027 1 936 0.95 1 876 27 98.6%

NTTheavy 3 231 3 017 0.93 2 742 130 96.0%

NTT−1 2 195 2 128 0.96 2 072 9 99.6%

basemul 2 894 2 737 0.94 2 500 109 95.6%

basemullight 1 695 1 659 0.97 1 634 6 99.6%

CRT 4287 4 216 0.98 3 563 13 99.6%

Table lookup 5 184 4 816 0.92 4 132 12 99.7%

22 H. Becker et al.

E High-level Multiplication Structure

See Fig. 2.

Fig. 2. High-level structure of our integer multiplication algorithm. Finely dot-
ted arrows denote a conceptual reinterpretation with no change in representation.
Dashed arrows denote a canonical choice of lift, e.g., a representative of minimal
degree for polynomials or a smallest non-negative representative for integers.

Efficient Multiplication of Somewhat Small Integers Using NTTs 23

References

[AB74] Agarwal, R.C., Burrus, C.S.: Fast convolution using Fermat number trans-
forms with applications to digital filtering. IEEE Trans. Signal Process.
22(2), 87–97 (1974)

[Abd+22] Abdulrahman, A., et al.: Multi-moduli NTTs for Saber on Cortex-M3 and
cortex-M4. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 127–151
(2022)

[Bear] Pornin, T.: BearSSL: a smaller TLS/SSL library
[Bec+22a] Becker, H., et al.: Neon NTT: faster Dilithium, Kyber, and Saber on

Cortex-A72 and Apple M1. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2022(1), 221–244 (2022)

[Bec+22b] Becker, H., et al.: Polynomial multiplication on embedded vector archi-
tectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 482–505
(2022)

[Chu+21] Chung, C.-M.M., et al.: NTT multiplication for NTT-unfriendly rings: new
speed records for Saber and NTRU on Cortex-M4 and AVX2. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(2), 159–188 (2021)

[Für09] Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005
(2009)

[Gar07] Garćıa, L.C.C.: Can Schönhage multiplication speed up the RSA decryp-
tion or encryption? In: MoraviaCrypt 2007 (2007)

[GKZ07] Gaudry, P., Kruppa, A., Zimmermann, P.: A GMP-based implementation
of Schönhage-Strassen’s large integer multiplication algorithm. In: ISSAC
2007, pp. 167–174. ACM (2007)

[GMP] Free Software Foundation. The GNU Multiple Precision Arithmetic
Library

[HH21] Harvey, D., van der Hoeven, J.: Integer multiplication in time O(n log n).
Ann. Math. 193(2), 563–617 (2021)

[KAK96] Koc, C.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro 16(3), 26–33 (1996)

[KO63] Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on
automata. Soviet Phys. Doklady 7, 595–596 (1963). Translated from Dok-
lady Akademii Nauk SSSR, vol. 145, no. 2, pp. 293–294, July 1962

[Mbed] Arm Ltd., Mbed TLS
[Mon85] Montgomery, P.L.: Modular multiplication without trial division. Math.

Comput. 44(170), 519–521 (1985)
[Pol71] Pollard, J.M.: The fast Fourier transform in a finite field. Math. Comput.

25, 365–374 (1971)
[RSA78] Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signa-

tures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
[SS71] Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Com-

puting 7(3–4), 281–292 (1971)
[Too63] Toom, A.L.: The complexity of a scheme of functional elements realizing

the multiplication of integers. Soviet Math. Doklady 3, 714–716 (1963)

	Efficient Multiplication of Somewhat Small Integers Using Number-Theoretic Transforms
	1 Introduction
	1.1 Results

	2 Preliminaries
	2.1 RSA
	2.2 FFT-Based Integer Multiplication
	2.3 Number-Theoretic Transforms
	2.4 Modular Reductions and Multiplications
	2.5 Implementation Targets

	3 Implementations
	3.1 High-Level Strategy
	3.2 Parameter Choices
	3.3 Chunking and Dechunking
	3.4 Modular Exponentiation and Table Lookup
	3.5 Implementation Details for Cortex-M3
	3.6 Implementation Details for Cortex-M55

	4 Results
	4.1 Benchmark Environment
	4.2 NTT and FNT Performance
	4.3 Modular Arithmetic: Multiplication, Squaring, Exponentiation

	A Reduction Algorithms for Cortex-M3 and Cortex-M55
	B On Precomputing the Montgomery Constant
	C Table Lookup
	D Pipeline Efficiency of Cortex-M55 Implementation
	E High-level Multiplication Structure
	References

