
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 349–371. DOI:10.46586/tches.v2022.i4.349-371

Multi-Parameter Support with NTTs for NTRU
and NTRU Prime on Cortex-M4

Erdem Alkim1, Vincent Hwang2,3 and Bo-Yin Yang3

1 Dokuz Eylul University, Izmir, Turkey
erdemalkim@gmail.com

2 National Taiwan University, Taipei, Taiwan
3 Academia Sinica, Taipei, Taiwan

vincentvbh7@gmail.com,by@crypto.tw

Abstract. We propose NTT implementations with each supporting at least one
parameter of NTRU and one parameter of NTRU Prime. Our implementations
are based on size-1440, size-1536, and size-1728 convolutions without algebraic
assumptions on the target polynomial rings. We also propose several improvements
for the NTT computation. Firstly, we introduce dedicated radix-(2, 3) butterflies
combining Good–Thomas FFT and vector-radix FFT. In general, there are six
dedicated radix-(2, 3) butterflies and they together support implicit permutations.
Secondly, for odd prime radices, we show that the multiplications for one output can
be replaced with additions/subtractions. We demonstrate the idea for radix-3 and
show how to extend it to any odd prime. Our improvement also applies to radix-(2, 3)
butterflies. Thirdly, we implement an incomplete version of Good–Thomas FFT for
addressing potential code size issues. For NTRU, our polynomial multiplications
outperform the state-of-the-art by 2.8%−10.3%. For NTRU Prime, our polynomial
multiplications are slower than the state-of-the-art. However, the SotA exploits the
specific structure of coefficient rings or polynomial moduli, while our NTT-based
multiplications exploit neither and apply across different schemes. This reduces the
engineering effort, including testing and verification.
Keywords: NTT · NTRU · NTRU Prime · Cortex-M4 · NISTPQC · Vector-Radix
FFT · Good–Thomas FFT

1 Introduction
Shor’s algorithm for integer factorization and discrete logarithm threatens public-key cryp-
tosystems based on RSA and ECC [Sho97]. Since then, researchers have been developing
cryptosystems without known weaknesses from quantum computers. This line of research
is known as “post-quantum cryptography”. In 2016, the National Institute of Standards
and Technology (NIST) called for proposals replacing existing standards for public-key
cryptosystems with schemes resisting attacks by quantum computers.

Recent research has shown that the number-theoretic transform (NTT) plays an impor-
tant role in the implementations for lattice-based submissions, including Dilithium [BHK+22],
Kyber [BKS19, AHKS22, BHK+22], NTRU [CHK+21], NTRU Prime [ACC+21], and
Saber [CHK+21, ACC+22, BHK+22, BMK+22]. If NTT is natively supported, then we
can apply it directly. On the other hand, if NTT is not natively supported, we have to
choose a large NTT-friendly polynomial ring covering the maximum value of the result
in Z[x]. This approach is known as “NTT multiplications for NTT-unfriendly rings”
by [CHK+21, FSS20]. On Cortex-M4, the most compelling non-NTT-based approach is

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.349-371
mailto:erdemalkim@gmail.com
mailto:vincentvbh7@gmail.com,by@crypto.tw
http://creativecommons.org/licenses/by/4.0/

350 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

the Toeplitz matrix-vector product (TMVP) exploiting the structure of (weighted) convo-
lutions without changing the coefficient rings [IKPC20, IKPC22]. [IKPC20] demonstrated
the idea for Saber on the ARM Cortex-M4. Their implementation remains the fastest
non-NTT-based approach on Cortex-M4 compared to [BMK+22]. Recently, [IKPC22]
showed that TMVP is faster than the NTT-based multiplication by [CHK+21] for NTRU
on Cortex-M4.

We propose improvements for NTT-based multiplications balancing between perfor-
mance and code size without assuming any algebraic properties of the target coefficient rings.
Our NTT-based multiplications outperform [IKPC22] for parameters ntruhps2048677,
ntruhrss701, and ntruhps4096821. Since no algebraic properties are assumed, our im-
plementations naturally extend to NTRU Prime while TMVP may not apply to NTRU
Prime, with its polynomial modulus xp − x− 1, without doubling the size of convolutions

Cortex-M4 implementations targeting the board STM32F407-DISCOVERY, [KRS19, BKS19,
IKPC20, MKV20, ABCG20, ACC+21, CHK+21, GKS21, AHKS22, ACC+22, IKPC22]
reported performance numbers while clocking at 24 MHz to avoid wait states. A much
more meaningful way for benchmarking is to report the numbers at the full speed, 168
MHz, of the board. This would illustrate to the users the impact of the performance
while adjusting the frequency for their development. We take this under consideration and
report at both 24 MHz and 168 MHz. Our implementations are designed with compact
code size and negligible performance penalties while raising the frequency.

Contribution. Our contribution is summarized as follows.
1. We implement NTT-based convolutions, each supporting multiple parameters.

(a) Our NTT-based size-1440 convolution supports ntruhps2048677, ntruhrss701,
and ntrulpr653/sntrup653. We present the implementations of all.

(b) Our NTT-based size-1536 convolution supports (in addition to those instances in
(a)) ntruhps2048677, ntruhrss701, ntrulpr761/sntrup761. We present the
implementations of ntruhps2048677, ntruhrss701, and ntrulpr761/sntrup761.

(c) Our NTT-based size-1728 convolution supports (in addition to (a) and (b))
ntruhps4096821, ntrulpr857/sntrup857. We present the implementations of
ntruhps4096821, and ntrulpr857/sntrup857.

2. We implement dedicated radix-(2, 3) butterflies for combining Good–Thomas FFT
by [Goo58] and vector–radix FFT by [HMCS77]. In general, six different dedicated
radix-(2, 3) butterflies together support implicit permutations for Good–Thomas
FFT when considering radix-2 and -3 transformations. For size-1536 convolutions,
they compare favorably to the (dedicated) radix-2 butterflies [ACC+21, Figure 2].

3. We point out an overlooked optimization for all non-radix-2 butterflies. In particular,
for a radix-r butterfly with r 6= 2, we replace (r − 1) multiplications and 1 addition
with (r − 2) additions and 1 subtraction. This extends the existence of subtraction
in radix-2 butterflies to all butterflies. Thus, it is applicable to other platforms and
other implementations computing non-radix-2 butterflies. We further apply this
optimization to our radix-(2, 3) butterflies implementing vector-radix FFT.

4. We reduce code size while permuting coefficients implicitly for Good–Thomas FFT.
To enable this, we formally present the original Good–Thomas FFT [Goo58] as an
isomorphism from an associative algebra to a tensor product of associative algebras,
which justifies the existence of incomplete versions of Good–Thomas FFT different
from [Ber01] and [ACC+21]1. To demonstrate the practical code size advantage, we
benchmark our NTT-based polynomial multiplications at the full speed of our board.

1They presented a restricted form of Good–Thomas FFT as an isomorphism from a group algebra to a
tensor product of group algebras.

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 351

Dedicated radix-(2, 3) butterflies and improved non-radix-2 butterflies are algorithmic
improvements applicable to other platforms. While our code size optimization for Good–
Thomas FFT is specific to our board STM32F407-DISCOVERY, our demonstrated approach
for addressing code size issues has other benefits, e.g. potential to facilitate vectorization.

We discuss two use cases where multiplications based on our NTT-based convolutions
are more favorable: (i) Plural schemes with comparable parameter sets are selected by NIST
and other institutions (cf. OpenSSH). (ii) Multiple parameter sets of one scheme are being
implemented (here, for the M4). For (i), state-of-the-art multipliers for NTRU [IKPC22]
and NTRU Prime [Che21] exploit the special structures of polynomial moduli or coefficient
rings. So adapting code for NTRU Prime and NTRU for each other is hard. Since we
compute the results in Z[x], the only distinctions are the reductions to the target polynomial
rings. For (ii), each of the multipliers for NTRU Prime by [Che21] only supports one
parameter. The multipliers by [IKPC22] (without doubling polynomial degrees) support
NTRU parameters up to a fixed degree, and our NTT-based convolutions support NTRU
and NTRU Prime parameters up to a fixed degree. Notice our NTT-based multipliers
with compact code sizes are faster than the unrolled multipliers by [IKPC22].

Code. See https://github.com/vincentvbh/multi-params-ntt_NTRU_NTRUPrime.

Related work. The incomplete transformation of Good–Thomas FFT can already be
deduced from [Goo58]. [FP07] was aware of the use of incomplete Good–Thomas FFT for
vectorization, but it is unclear if their program Spiral picked incomplete Good–Thomas FFT
as the best strategy of code generation. [ACC+21] and [Che21] implemented polynomial
multiplications for NTRU Prime on Cortex-M4. [ACC+21] also explained how to permute
implicitly for Good–Thomas FFT by the proposed dedicated 3-layer radix-2 butterflies.
[IKPC20] proposed the use of TMVP for Saber on Cortex-M4. Shortly after, [CHK+21]
implemented NTT-based polynomial multiplications for LAC, NTRU, and Saber on Cortex-
M4 and Skylake with AVX2. Finally, [IKPC22] applied TMVP to NTRU on Cortex-M4.

Structure of this paper. This paper is structured as follows: Section 2 is the background.
Section 3 introduces our NTT improvements. Section 4 describes our implementations of
NTT-based multiplications. Section 5 gives performance numbers.

2 Preliminaries
Section 2.1 introduces the target polynomial multiplications in NTRU and NTRU Prime.
Section 2.2 introduces the Cortex-M4 and the implementations of modular reductions
and multiplications. Section 2.3 explains NTTs. We then review various kinds of FFTs
including Cooley–Tukey (Section 2.4), Good–Thomas (Section 2.5), and vector–radix FFT
(Section 2.6). Finally, Section 2.7 explains how to apply NTTs to NTT-unfriendly rings.

2.1 Polynomial Multiplications in NTRU and NTRU Prime
The NTRU submission [CDH+20] comprises parameter sets for two similar schemes NTRU-
HPS and NTRU-HRSS, both operating on the polynomial rings Z3[x]/〈Φn〉 , Zq[x]/〈Φn〉 ,
and Zq[x]/〈xn − 1〉 . Here q is a power of 2, n is prime, and Φn is the polynomial

∑n−1
i=0 x

i.
The NTRU Prime submission [BBC+20] consists of two families of schemes NTRU LPRime
and Streamlined NTRU Prime. Both operate in the polynomial rings Z3[x]/〈xp − x− 1〉
and Zq[x]/〈xp − x− 1〉 for various p and q, primes such that Zq[x]/〈xp − x− 1〉 is a
finite field. We focus on polynomial multiplications in the rings Zq[x]/〈xn − 1〉 of NTRU
and Zq[x]/〈xp − x− 1〉 of NTRU Prime each with one operand ternary (coefficients in
{−1, 0, 1}). See parameters in Tables 1–2.

https://github.com/vincentvbh/multi-params-ntt_NTRU_NTRUPrime

352 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

While NTRU-HRSS requires no sampling of polynomials with fixed numbers of
{−1, 0, 1} coefficients, NTRU-HPS, NTRU LPRime, and Streamlined NTRU Prime call
a sorting network subroutine for the sampling. Furthermore, inverting polynomials are
required in the key generations of NTRU-HPS, NTRUHRSS, and Streamlined NTRU
Prime. We refer to the specifications [CDH+20, BBC+20] for more details.

Table 1: NTRU parameter sets. Starred parameters are covered in this paper.
NTRU-HPS NTRU-HRSS

ntruhps2048509 ntruhps2048677* ntruhps4096821* ntruhps40961229 ntruhrss701* ntruhrss1373

n 509 677 821 1229 701 1373
q 2048 2048 4096 4096 8192 16384

Table 2: NTRU Prime parameter sets. Starred parameters are covered in this paper.
NTRU LPRime ntrulpr653* ntrulpr761* ntrulpr857* ntrulpr953 ntrulpr1013 ntrulpr1277

Streamlined NTRU Prime sntrup653* sntrup761* sntrup857* sntrup953 sntrup1013 sntrup1277

p 653 761 857 953 1013 1277
q 4621 4591 5167 6343 7177 7879

2.2 Cortex-M4
As selected by NIST for evaluating PQC candidates on micro-controllers, the ARM Cortex-
M4 is our target platform for implementing PQC schemes. The Cortex-M4 implements
the Armv7E-M architecture. Some of the most relevant features are as follows:

General-purpose registers: There are 16 core registers, named r0–r15. Except for the
stack pointer (r13) and the program counter (r15), all other core registers can be
treated as general-purpose registers.

Floating-point registers: There are 32 single-precision floating-point registers that can
also be used as a low-latency cache [ACC+21, CHK+21, ACC+22, AHKS22].

Single cycle: Most instructions take 1 cycle each, including multiplications mul, mla,
and mls, long multiplications {u,s}{mul, mla}l, and signed most-significant-word
multiplications sm{mul, mla, mls}{, r}. An exception is that a string of l single-
load instructions (ldr{, h, sh, b, sb}) takes l + 1 cycles. For more details on
load/store timings, see [ARM10].

Barrel shifters: Shifts and rotates (asr, lsl, lsr, and ror), come at no extra cost when
used as the “flexible second operand” of a standard data-processing instruction.

We first describe the multiplication instructions. mul multiplies two 32-bit values and
places the lower 32-bit result to the first (destination) register. mla accumulates the 32-bit
result to an accumulator, and mls subtract the 32-bit result from the accumulator. The
accumulators are the last arguments named to mla and mls. smull multiplies two 32-bit
values and places the 64-bit result in two destination registers. The first-named register
holds the lower 32-bit result, and the second-named register holds the upper 32-bit result.
smlal accumulates the 64-bit result to the destination registers. umull and umlal are
their unsigned counterparts. smmul returns the upper 32-bit of a 64-bit product of two
32-bit values. The suffix r indicates that the 64-bit product is first rounded to the upper
32-bit.

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 353

Modular reductions and multiplications are the most critical parts of NTT-based
polynomial multiplications. We implement 32-bit Barrett reduction [Bar86], 32-bit Mont-
gomery reduction, and 32-bit Montgomery multiplication [Mon85, Sei18]. Throughout this
paper, we assume R = 232 and let mod± be the signed modular reduction. 32-bit Barrett

reduction maps a value a to a−
⌊
ab R

q e
R

⌉
q as an approximation of a−

⌊
a
q

⌉
q = a mod ±q.

Algorithm 1 is an illustration. Montgomery multiplication, denoted as montgomery(a, b),
computes

ab+ q ·
(
ab ·

(
−q−1 mod ±R

)
mod ±R

)
R

≡ abR−1 mod ±q

from (a, b). To see why it is a reduction, we observe that in terms of absolute values,
|montgomery(a, b)| ≤ |ab|R + q

2 . If |a| ≤ R
2 and |b| ≤ q

2 , we have |montgomery(a, b)| ≤ q
4 +

q
2 = 3q

4 . Concretely, we denote mMul_des_32(l, h, a, b, t) as the 32-bit Montgomery
multiplication with input registers a, b and output register h as shown in Algorithm 2.

Algorithm 1 Barrett reduction
Input: a = a

Output: a = a−
⌊

a
⌊

R
q

⌉
R

⌉
· q

1: smmulr t a,
⌊

R
q

⌉
2: mls a t, q, a

Algorithm 2 mMul_des_32
Input: (a, b) = (a, b)
Output: h ≡ abR−1 mod ±q
1: smull l, h, a, b
2: mul t, l, −q−1 mod ±R
3: smlal l, h, t, q

2.3 Number–Theoretic Transforms
In this paper, we assume readers are already familiar with the language of tensor product
of associative algebras over the same commutative ring. Nevertheless, we go through some
important concepts in algebra. A homomorphism from an algebraic structure to another
one is a structure-preserving map. We call it an isomorphism if there is a one-to-one
correspondence between the domain and the range. The importance of isomorphisms
is the underlying computational costs for converting expensive computations into cheap
computations without losing any algebraic properties. Let R be a commutative ring and
f(x) a polynomial with coefficients in R. The polynomial ring R[x]/〈f(x)〉 is an associative
algebra over R. If f(x) takes the form xn − 1 for some n ∈ N, R[x]/〈xn − 1〉 is a group
algebra since it can be constructed naturally by taking elements in the cyclic group (Zn,+, 0)
as the basis. Polynomial multiplications in R[x]/〈xn − 1〉 are called (cyclic) convolutions.
If f(x) = xn − ψ where ψ 6= 1 ∈ R, polynomial multiplications in R[x]/〈xn − ψ〉 are
called weighted convolutions [CF94]. Let R[x(0)]

/〈
f0(x(0))

〉
and R[x(1)]

/〈
f1(x(1))

〉
be

two polynomial rings. Their tensor product R[x(0)]
/〈
f0(x(0))

〉
⊗ R[x(1)]

/〈
f1(x(1))

〉
is

also an associative algebra over R. We also write R[x(0)]
/〈
f0(x(0))

〉
⊗ R[x(1)]

/〈
f1(x(1))

〉
as R[x(0),x(1)]
〈f0(x(0)),f1(x(1))〉 . We refer to [Jac12, Sec. 3.9] and [Bou89, Chap. III, Sec. 4.1] for a

more formal treatment. At a high level our implementations convert the multiplication in
R[x]/〈xn − 1〉 into the multiplication in a tensor product of associative algebras.

We proceed with the definitions of the number–theoretic transforms (NTTs). If ζm is
invertible in R, m is coprime to the characteristic of R, and there is a principal m-th root
of unity ωm, we can define the size-m NTT, NTTR[x]/〈xn−ζm〉 :ωm

[Pol71, Für09, HvdH21].
If R = Zq with the prime factorization q = pl00 · · · p

ld−1
d−1 , it can be shown that the above

condition is equivalent to the existence of n fulfilling n|0(q) := gcd(p0 − 1, . . . , pd−1 −
1) [AB74]. NTTR[x]/〈xn−ζm〉 :ωm

transforms the ring R[x]/〈xn − ζm〉 into the product ring∏m−1
i=0 R[x]

/〈
x

n
m − ζωim

〉
by first re-writing a polynomial a(x) =

∑n−1
i=0 aix

i as a′(x′) =∑m−1
i=0

(∑ n
m−1
j=0 ai n

m +jx
j
)
x′i and sending a′(x′) to the m-tuple

(
a′(ζ), . . . ,a′(ζωm−1

m)
)
. If

354 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

m = n, we call it complete NTT, and if m 6= n, we call it incomplete NTT. If ζm = 1, we
call it cyclic NTT and write it as NTTR[x]:n:ωm

. When the context is clear, we simply say
NTT. Furthermore, let us denote by ωn a principal n-th root of unity. If ωn exists, there
are φ(n) choices of ωn sharing the same algebraic properties where φ is the Euler’s totient
function. For an m|n, we usually fix an ωn and define ωm := ω

n
m l
n where l is coprime to m.

2.4 Cooley–Tukey and Gentleman–Sande FFTs
Cooley–Tukey [CT65] and Gentleman–Sande [GS66] FFTs are popular approaches for
computing size-m NTTs for highly composite m. For a factorization of m = m0m1, Cooley–
Tukey FFT computes the isomorphism R[x]/〈xn − ζm〉 ∼=

∏m−1
i=0 R[x]

/〈
x

n
m − ζωim

〉
via

applying size-m0 NTTs with ωm0 := ωm1
m and size-m1 NTTs with ωm1 := ωm0

m as follows:
R[x]/〈xn − ζm〉 ∼=

∏v0−1
i0=0 R[x]

/〈
x

n
m0 − ζm1ωi0m0

〉
∼=
∏m0−1
i0=0

∏m1−1
i1=0 R[x]

/〈
x− ζωi0mωi1m1

〉
.

Since ωi0mωi1m1
= ωi0+i1m0

m , the result is only different from NTTR[x]/〈xn−ζm〉 :ωm
by a permu-

tation. If m = rk for some r and k, we can apply a k-level split where each level consists
of several size-r NTTs. It can be easily shown that there is a radix-r reversal between
the result of CT FFT and the straightforward computation. Note that the first level
maps a polynomial a(x) to

(
a′(ζm1ωi0m0

)
)
i0

by evaluating x
n

m0 at several ζm1ωi0m0
’s. Such

evaluations are also called Cooley–Tukey butterflies. Figure 1a is an illustration for (a′)0
(up) and (a′)1 (down) where m0 = 2 (and w2 = −1), and Figure 2a is an illustration for
(a′)0 (up), (a′)1 (middle), and (a′)2 (down) where m0 = 3.

ai + ζ
n
2 ai+ n

2

ai − ζ
n
2 ai+ n

2
ai+ n

2

ai

(a) Cooley–Tukey butterflies.

ai + ai+ n
2(

ai − ai+ n
2

)
ωimai+ n

2

ai

(b) Gentleman–Sande butterflies.

Figure 1: Radix-2 butterflies.

ai + ζ
n
3 ai+ n

3
+ ζ

2n
3 ai+ 2n

3

ai + ζ
n
3 ω3ai+ n

3
+ ζ

2n
3 ω2

3ai+ 2n
3

ai + ζ
n
3 ω2

3ai+ n
3

+ ζ
2n
3 ω3ai+ 2n

3
ai+ 2n

3

ai+ n
3

ai

(a) Cooley–Tukey butterflies.
ai + ai+ n

3
+ ai+ 2n

3(
ai + ω3ai+ n

3
+ ω2

3ai+ 2n
3

)
ωim(

ai + ω2
3ai+ n

3
+ ω3ai+ 2n

3

)
ω2i
m

ai+ 2n
3

ai+ n
3

ai

(b) Gentleman–Sande butterflies.

Figure 2: Radix-3 butterflies.

Gentleman–Sande FFT transforms R[x]/〈xn − ζm〉 to R[x, y]
/〈
x

n
m − ζy, ym − 1

〉
by

introducing the equivalence x n
m ∼ ζy and regarding R[x]

/〈
x

n
m − ζy

〉
as the coefficient

ring. For ζm = 1, the computation R[x]/〈xn − 1〉 ∼=
∏m0−1
i0=0 R[x]

/〈
x

n
m0 − ωi0m0

〉
∼=∏m0−1

i0=0 R[x, y]
/〈

y
n

m0 − 1
〉

is called Gentleman–Sande butterfly. Moreover, the introduc-

tion of x
n

m0 ∼ ωi0my requires multiplications by powers of ωi0m. It is usually written as the

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 355

map x
n

m0 7→ ωi0my and is also called “twisting". Figures 1b and 2b are illustrations for
m0 = 2 and m0 = 3. In this paper, we retain the language of equivalence relations for clear
explanations of optimizations, but one must keep in mind that we still need multiplications.

If there are no r, d0, d1 ∈ N satisfying m0 = rd0 and m1 = rd1 , we call the FFT
“mixed–radix”.

2.5 Good–Thomas FFT
Let q0 and q1 be two coprime integers. Good–Thomas FFT transforms NTTR[x]:q0q1:ωq0q1
into NTTR[x(0)]:q0:ωq0

⊗ NTTR[x(1)]:q1:ωq1
where ωq0 := ωe0

q0q1
, ωq1 := ωe1

q0q1
, and e0 and e1

are orthogonal idempotent elements (ei0ei1 = δi0,i1ei0 where δ is the Kronecker delta)
realizing a ≡ e0(a mod q0) + e1(a mod q1) (mod q0q1) [Goo58, Section 12][Tho63]. Since
cyclic NTTs require fewer multiplications than acyclic ones, this is more favorable than the
mixed-radix size-q0q1 CT and GS FFT. [Ber01] and [ACC+21] stated the transformation as
turning a group algebra into a tensor product of group algebras by introducing x ∼ x(0)x(1).
However, this statement is actually weaker than the originally proposed formulation
by [Goo58]. We describe a statement for convolutions implied by the work of [FP07,
Paragraph Vectorized FFT, Section 3].

Let n = vq0q1 with q0⊥q1. Applying Good–Thomas FFT to convolution is to introduce
the equivalence xv ∼ x(0)x(1) turning the group algebra R[x]/〈xn − 1〉 into the tensor prod-
uct R̄[x(0)]

/〈(
x(0))q0 − 1

〉
⊗ R̄[x(1)]

/〈(
x(1))q1 − 1

〉
where R̄ := R[x]

/〈
xv − x(0)x(1)〉 .

[FP07] was aware of the transformation, but it is unclear if their program Spiral generates
the transformation. Moreover, they overlooked two important implementation aspects of
multi-dimensional NTTs: (i) vector–radix FFT in the next section, and (ii) code size while
permuting with Good–Thomas FFT as shown in Section 3.2.

In the literature, there are at least two maps transforming NTTR[x]:q0q1:ωq0q1
into the

tensor product NTTR[x(0)]:q0:ωq0
⊗NTTR[x(1)]:q1:ωq1

. One, the “CRT map”, is described above;
the other is the “Ruritanian map” [Goo71] introducing the equivalence xvl ∼ x(0)x(1)

where l = (q0 + q1)−1 mod q0q1. Since q0 + q1 is coprime to q0q1, (q0 + q1)−1 is a generator
of (Zq0q1 ,+, 0), and the map 1 7→ (q0 + q1)−1 is an automorphism of (Zq0q1 ,+, 0). This
implies an isomorphic way for constructing the group algebra from Zq0q1 and defining
NTTR[x]:q0q1:ωq0q1

. Since there are φ(q0q1) generators of (Zq0q1 ,+, 0), there are φ(q0q1) many
automorphisms and exactly the same number of maps for transforming a 1-dimensional
NTT into a 2-dimensional NTT. The smallest example is (q0, q1) = (2, 3) where φ(q0q1) = 2.
This explains why only two maps can be given in general.

Table 3: Permutation of Good–Thomas FFT for size-6 convolutions.
CRT mapping Ruritanian mapping

i 0 1 2 3 4 5 i 0 1 2 3 4 5
i0 0 1 0 1 0 1 i0 0 1 0 1 0 1
i1 0 1 2 0 1 2 i1 0 2 1 0 2 1

2.6 Vector–Radix FFT
Vector–radix FFT is a multi-dimensional generalization of FFT introduced by [HMCS77].
The core idea is that for a d-dimensional

⊗d−1
i=0 NTTR[x(i)]/〈(x(i))ni−ζmi〉 :ωmi

, the compu-
tations of each dimension are independent of each other and we can interleave them
freely as long as the order of operations in the same dimension is preserved. Since each
dimension can be written as a sequence of additions and multiplications, we can interleave
the computations such that strings of multiplications are adjacent to each other. If we
look closely into the strings of multiplications from several dimensions, we find that a lot

356 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

of entries are multiplied by more than one twiddle factor. If we precompute the twiddle
factors multiplied to the same entry, then we save multiplications.

Inputs

Outputs

id⊗ NTT(0)

ζ0

ζ0

NTT(1) ⊗ id

ζ1
ζ1

(x(1) 7→ ζ1)⊗ (x(0) 7→ ζ0)

ζ1

ζ0ζ1

addsub⊗ addsub

Figure 3: Radix-(2, 2) butterfly and 2-layer radix-2 butterfly comparison. A group of four
circles represents four coefficients. Each circulated region applies the tensor product of
isomorphisms with the same color to a group of four. The left four are scaled versions of
the inputs for the radix-(2, 2) butterfly, and the right four are the intermediate results of
1-dimensional radix-2 butterflies. Real lines send the scaled results and dotted lines send
the negated and scaled ones. Several lines are omitted for clarity. For the details, please
refer to the definitions of the symbols.

We illustrate the idea of [HMCS77] with a 2-dimensional NTT with dimension 2× 2.
Let NTT(0) := NTT

R[x(0)]
/〈

(x(0))2−ζ2
0

〉
:−1, NTT(1) := NTT

R[x(1)]
/〈

(x(1))2−ζ2
1

〉
:−1, id be the

identity map, and addsub := (a, b) 7→ (a + b, a − b). Applying 1-dimension NTTs is to
compute with

(
NTT(1) ⊗ id

)
◦
(
id⊗ NTT(0)) as follows.

(
a0,0 a0,1
a1,0 a1,1

)
id⊗NTT(0)

7→
(
a0,0 + ζ0a0,1 a0,0 − ζ0a0,1
a1,0 + ζ0a1,1 a1,0 − ζ0a1,1

)
NTT(1)⊗id7→

(
a0,0 + ζ0a0,1 + ζ1a1,0 + ζ0ζ1a1,1 a0,0 − ζ0a0,1 + ζ1a1,0 − ζ0ζ1a1,1
a0,0 + ζ0a0,1 − ζ1a1,0 − ζ0ζ1a1,1 a0,0 − ζ0a0,1 − ζ1a1,0 + ζ0ζ1a1,1

)
.

Vector–radix FFT first decomposes NTT(0) into addsub ◦ (x(0) 7→ ζ0) and NTT(1) into
addsub ◦ (x(1) 7→ ζ1). If we group the multiplications together, we have(

NTT(1) ⊗ id
)
◦
(

id⊗ NTT(0)
)

= (addsub⊗ addsub) ◦
(

(x(1) 7→ ζ1)⊗ (x(0) 7→ ζ0)
)

where (x(1) 7→ ζ1) ⊗ (x(0) 7→ ζ0) can be written as
(
x(0))i0 (x(1))i1 7→ ζi00 ζ

i1
1 . Obvi-

ously,
(
x(0))i0 (x(1))i1 7→ ζi00 ζ

i1
1 requires 3 multiplications whereas

(
(x(1) 7→ ζ1)⊗ id

)
◦(

id⊗ (x(0) 7→ ζ0)
)
requires 4 multiplications. Figure 3 is an illustration.

Note that the core idea of vector–radix FFT is that multiplications from different
dimensions can be merged. This holds if we compute both dimensions with GS FFT, and
in general, even if we compute CT in one dimension and GS in the other.

2.7 NTT Multiplications for NTT-unfriendly Rings
A sequence of ring operations can be computed in a larger ring if the results of each step
can be uniquely identified in the larger ring. The approach for lifting a coefficient ring to a

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 357

larger one is known as “NTT multiplications for NTT-unfriendly rings” [CHK+21, FSS20].
In a broader sense, we use the same terminology for the lifting a polynomial modulus to a
larger polynomial modulus in this paper.

3 Number–Theoretic Transforms
This section introduces some theoretical aspects on implementing NTTs. Section 3.1
introduces an optimization applicable to non-radix-2 butterflies. Section 3.2 illustrates a
potential code size issue about Good–Thomas FFT. Section 3.3 demonstrates a principle
for balancing between code size and performance.

3.1 Improving Non-Radix-2 Butterflies
We first discuss an interesting observation regarding non-radix-2 butterflies. For simplicity,
we compare radix-2 and radix-3 CT butterflies, but our observation can be generalized to
arbitrary radices. In this section, we assume ψ is an invertible element.

3.1.1 Radix-3 Butterflies

Algorithm 3 Radix-3 butterfly [CHK+21].
Input: (c0, c1, c2) = (c0, c1, c2)
Output:

c0’ = ĉ0 := c0 + ψc1 + ψ2c2

c1’ = ĉ1 := c0 + ψω3c1 + ψ2ω2
3c2

c2’ = ĉ2 := c0 + ψω2
3c1 + ψ2ω4

3c2

1: smull t1, c0’, c1, ψ
2: smlal t1, c0’, c2, ψ2

3: mul t0, t1, q′

4: smlal t1, c0’, t0, q . c0’ = ψc1 + ψ2c2
5: . If ψ = 1, we compute c0’ = c1 + c2 with add instead
6: smull t1, c1’, c1, ψω3
7: smlal t1, c1’, c2, ψ2ω2

3
8: mul t0, t1, q′

9: smlal t1, c1’, t0, q . c1’ = ψω3c1 + ψ2ω2
3c2

10: smull t1, c2’, c1, ψω2
3

11: smlal t1, c2’, c2, ψ2ω4
3

12: mul t0, t1, q′

13: smlal t1, c2’, t0, q . c2’ = ψω2
3c1 + ψ2ω4

3c2
14: add.w c2’, c2’, c0 . c2’ = ĉ2
15: add c1’, c0 . c1’ = ĉ1
16: add c0’, c0 . c0’ = ĉ0

Recall that radix-2 CT butterfly maps (c0, c1, ψ) to (c0 + ψc1, c0 − ψc1) and radix-3 CT
butterfly maps (c0, c1, c2, ψ) to (ĉ0, ĉ1, ĉ2) = (c0 + ψc1 + ψ2c2, c0 + ψω3c1 + ψ2ω2

3c2, c0 +
ψω2

3c1 + ψ2ω4
3c2). 32-bit radix-3 butterflies were implemented by [CHK+21] and used in

the polynomial multiplication for ntruhps4096821. [CHK+21] computed (ĉ0, ĉ1, ĉ2) from
(c0, c1, ψ) via Algorithm 3, which requires 15 cycles if ψ 6= 1 and 12 cycles if ψ = 1.

We extend the existence of subtraction in radix-2 to radix-3 with the observations
ω2

3 = −(1 + ω3) and ω3 = −(1 + ω2
3). We first compute ψc1 + ψ2c2 and ψω3c1 + ψ2ω2

3c2.
For computing ĉ2, we compute (ψc1 + ψ2c2) + (ψω3c1 + ψ2ω2

3c2) with one addition and
subtract the result from c0. Now we have c0−

(
(ψc1 + ψ2c2) + (ψω3c1 + ψ2ω2

3c2)
)

= ĉ2 as
desired. Finally, we add c0 to ψc1 +ψ2c2 and ψω3c1 +ψ2ω2

3c2 to derive ĉ0 and ĉ1. In total,

358 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

12 cycles are required. If ψ = 1, then 9 cycles are required. Algorithm 4 is an illustration.
Comparing to Algorithm 3, 3 cycles are saved for each radix-3 butterfly.

Algorithm 4 Improved radix-3 butterfly.
Input: (c0, c1, c2) = (c0, c1, c2)
Output: (c0, c1, c2) = (ĉ0, ĉ1, ĉ2)
1: smull t1, t0, c1, ψ
2: smlal t1, t0, c2, ψ2

3: mul t2, t1, q′

4: smlal t1, t0, t2, q . t0 = ψc1 + ψ2c2
5: . If ψ = 1, we compute t0 = c1 + c2 with add instead
6: smull t1, c1, c1, ψω3
7: smlal t1, c1, c2, ψ2ω2

3
8: mul t2, t1, q′

9: smlal t1, c1, t2, q . c1 = ψω3c1 + ψ2ω2
3c2

10: add c2, c1, t0
11: rsb c2, c2, c0 . c2 = ĉ2
12: add c1, c0 . c1 = ĉ1
13: add c0, t0 . c0 = ĉ0

3.1.2 Generalization to Arbitrary Radices

We now generalize the idea to other radices. For computing c(ψωir)0≤i<r from c(x) =∑r−1
k=0 ckx

k, we pick a j indicating which multiplications to be replaced. If ψ = 1, we pick
j > 0. Since rc0 =

∑r−1
i=0 c(ψωir) by the definition of ωr, we have

c(ψωjr) = rc0 −
r−1∑

i=0,i6=j
c(ψωir) = c0 −

r−1∑
i=0,i6=j

(
c(ψωir)− c0

)
.

This implies that after computing c(ψωir)− c0 =
∑r−1
k=1 ckψ

kωikr for all i 6= j, c(ψωjr) can
be computed with r − 2 additions and one subtraction. Therefore, our idea replaces r − 1
multiplications with r − 2 additions. Finally, we subtract

∑r−1
i=0,i6=j

(
c(ψωir)− c0

)
from c0.

One should be aware that for a cyclic size-r NTT, there are many approaches other than
the näive radix-r butterfly if r is odd. Since Good–Thomas FFT applies whenever r has
more than one prime factor, we may assume that r = pk is a prime power. Winograd’s FFT
exploits the multiplicative structure of the unit group of Zpk to transform the size-pk NTT
into a size-pk−1(p−1) convolution [Win78]. For k > 1, since p is odd and p⊥p−1, we apply
Good–Thomas FFT to transform the size-pk−1(p− 1) convolution into a multi-dimensional
convolution. Therefore, we may restrict to the case k = 1 [Rad68]. If p − 1 has more
than one prime factor, we can also apply Good–Thomas FFT. Since p− 1 is even, we may
assume p − 1 = 2h for some h. It is well known that if 2h + 1 is a prime, then h = 2t
for some t. Therefore, we only need to focus on Fermat primes 22t + 1 of which four are
known: 3, 5, 17, and 65537. We already discuss the case r = 3. In the next section, we
demonstrate the benefit of our ideas for r = 5 using 32-bit arithmetic on the Cortex-M4.

3.1.3 The Case of r = 5

We first count the cycles spent on the näive approach with 32-bit arithmetic. We first
compute c(1) = c0 + c1 + c2 + c3 + c4 with four additions. For i = 1, . . . , 4, we compute
c(ωi5) − c0 = c1ω

i
5 + c2ω

2i
5 + c3ω

3i
5 + c4ω

4i
5 with one smull, three smlals, and one 32-

bit Montgomery reduction. Finally, we add c0 and derive c(ωj5). In total, we need
4 + (4 + 2 + 1) · 4 = 32 cycles.

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 359

We pick j = 4 for our improvement. While computing c(1), we first derive c(1)− c0 =
c1 +c2 +c3 +c4 and proceed with the computation for c(ω5)−c0, c(ω2

5)−c0, and c(ω3
5)−c0.

Then, we compute c(ω4
5) = c0−

∑3
i=0
(
c(ωi5)− c0

)
with three additions and one subtraction.

Finally, we add c0 to the first four values. In total, we need 3 + (4 + 2) · 3 + 4 + 4 = 29
cycles.

We outline Rader’s approach as follows. We first observe that (1, 2, 4, 3) = (20, 21, 22, 23)
in Z5. This tells us the following

π ◦


c(ω5)− c0
c(ω2

5)− c0
c(ω3

5)− c0
c(ω4

5)− c0

 =


c20(ω−1

5)20 + c21(ω−1
5)23 + c22(ω−1

5)22 + c23(ω−1
5)21

c20(ω−1
5)21 + c21(ω−1

5)20 + c22(ω−1
5)23 + c23(ω−1

5)22

c20(ω−1
5)22 + c21(ω−1

5)21 + c22(ω−1
5)22 + c23(ω−1

5)23

c20(ω−1
5)23 + c21(ω−1

5)22 + c22(ω−1
5)21 + c23(ω−1

5)20


where π = (34) is a permutation of four elements. We now compute the cyclic convolution
of (c20 , c21 , c23 , c24) and

(
(ω−1

5)20
, (ω−1

5)21
, (ω−1

5)22
, (ω−1

5)23
)
with one layer of Cooley–

Tukey FFT. Since the butterflies defined on the twiddle factors can be precomputed, the
size-4 convolution takes 4 + (2 + 2) · 4 + 4 = 24 cycles. Finally, we add the values with
c0. Although computing a size-4 convolution with one layer of Cooley–Tukey butterflies
requires division by 2, we can multiply the twiddle factors by 2−1 prior to the computation.
Another observation is that after applying one layer of radix-2 CT butterflies, we already
have c1 + c3 and c2 + c4 at hand. Therefore, we only need additional 2 cycles for
c(1) = c0 + c1 + c2 + c3 + c4. In summary, we need 24 + 4 + 2 = 30 cycles for the Rader
approach.

All in all, in the case of r = 5, our improved näive butterfly outperforms the original
näive butterfly and the Rader approach. For r = 17, Rader’s approach is probably better
because one can apply more layers of Cooley–Tukey butterflies.

3.2 Code Size Consideration of Good–Thomas FFT
In this section, we point out a potential issue of Good–Thomas FFT if we permute the
coefficients on-the-fly. We illustrate the issue for transforming a size-2k03k1 1-dimensional
FFT into a 2-dimensional FFT of dimensions 2k0 × 3k1 with 3k1 < 2k0−1. Furthermore,
we also assume that the upper half of the input polynomial are all zeros, and compute
with dedicated radix-(2, 3) butterflies.

Since 2k0 and 3k1 are coprime, there are 3k1−1 different loops, where each loop calls
2k0−1 dedicated radix-(2, 3) butterflies. Note that the period of the patterns of dedicated
radix-(2, 3) butterflies is 3k1 . We can partition the 2k0−1 calls into

⌈
2k0−1

3k1

⌉
sequences of

dedicated radix-(2, 3) butterflies. The first
⌊

2k0−1

3k1

⌋
sequences share the same structure

with 3k1 dedicated radix-(2, 3) butterflies and the last sequence consists of 2k0−1 mod 3k1

dedicated radix-(2, 3) butterflies. We follow the pattern of good and ungood permutation
subroutines in the AVX2 implementations of NTRU Prime for looping. The loop body
consists of 3k1 calls of dedicated radix-(2, 3) butterflies, and the conditional test for looping
is placed right after the ((2k0−1 mod 3k1) − 1)-th call (we start at 0). There are 3k1−1

loops where each loop consists of 3k1 calls of dedicated radix-(2, 3) butterflies. We want
32k1−1 as small as possible for controlling the code size.

Take the parameter set ntruhps4096821 for NTRU as an example. [CHK+21] computed
size-1728 convolutions with mixed-radix CT FFT. They implemented size-576 CT FFT
and computed 3 × 3 schoolbooks. As described in 2.5, Good–Thomas FFT is more
favorable than Cooley–Tukey FFT because cyclic NTTs are cheaper than acyclic ones.
ntrulpr761/sntrp761 [ACC+21] and ntruhps2048677/ntruhrss701 [CHK+21], using
Good–Thomas FFT, suggested transforming the size-1728 convolution into a 2-dimensional

360 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

convolution with dimensions 27 × 64. For computing the 2-dimensional FFT, applying
dedicated radix-(2, 3) butterflies will result in a blowup of code size since it is dominated
by 32·3−1 = 243 dedicated radix-(2, 3) butterflies, including memory operations. We cannot
control the code size and permute the coefficients on the fly as in [ACC+21, CHK+21].

3.3 Combining Cooley–Tukey, Good–Thomas, and Vector–Radix FFTs
We describe how to compute size-q0q̃q1v convolutions where q0 is a power of 2, q1 <

q0
2 is

a power of 3, and q̃⊥3. Furthermore, we require that at most one of q̃ and v is greater
than 1. Here v measures the degree of incompleteness of the coprime factorization of the
Good–Thomas FFT, and q̃ the incompleteness of the Cooley–Tukey FFT. We will fix q̃
and v at the end.

Let R̄ = R[x]
〈xv−x′〉 . We compute the result of NTTR̄[x′]:q0q1:ωq0q1

as follows. We first
convert NTTR̄[x′]:q0q1:ωq0q1

into NTTR̄[x(0)]:q0:ωq0
⊗ NTTR̄[x(1)]:q1:ωq1

by introducing the equiv-
alence x′ ∼ x(0)x(1). This can be realized by permuting the coefficients. For computing
NTTR̄[x(0)]:q0:ωq0

⊗NTTR̄[x(1)]:q1:ωq1
, we look at min(log2 q0, log3 q1) for determining the num-

ber of layers of radix-(2, 3). We then replace the 0-th layer of radix-(2, 3) butterflies
and the permutation x′ ∼ x(0)x(1) with dedicated radix-(2, 3) butterflies according to the
assumption that the upper half of the coefficients are all zeros. After min(log2 q0, log3 q1)
layers of radix-(2, 3) butterflies, we compute the remaining layers of radix-2 butterflies.

We now explain how to pick v for controlling code size. We have to keep in mind that
the code size of the initial layer is determined by the period and the number of distinct loops
for calling dedicated radix-(2, 3) butterflies. From the previous section, we must have code
for q2

1
3 dedicated radix-(2, 3) butterflies. For Cortex-M4, q1 = 3, 9 are reasonable numbers

since there are only 32

3 = 9 or 92

3 = 27 dedicated radix-(2, 3) butterflies to be programmed.
For the size-1440, size-1536, and size-1728 convolutions, we choose (q̃, v) = (5, 1), (4, 1),
and (1, 3) since 1440 = 32 · 5 · 9 · 1, 1536 = 128 · 4 · 3 · 1, and 1728 = 64 · 1 · 9 · 3.

Note that for some platforms, code size might not be a consideration. Very often, such
platforms are powerful enough to support vector instructions. One should choose v as a
multiple of the number of elements contained in a vector. Then, the entire computation,
including dedicated radix-(2, 3) butterflies for on-the-fly permutations, requires no permu-
tation instructions and additional memory operations. We believe this will be useful for
platforms implementing Neon, MVE, AVX2, AVX512, SSE, and SSE2.

4 Implementations
In this section we go through our implementations for NTT-based polynomial multiplica-
tions with each supporting at least one parameter for NTRU and one parameter for NTRU
Prime with little modifications. We distinguish two words: level and layer. We use the word
“layer” for transformations in terms of mathematics and “level” for computations between a
load and a store to the same memory address. All the cycle counts refer to the Cortex-M4
cycles. This section is structured as follows: Section 4.1 introduces dedicated radix-(2, 3)
butterflies. Section 4.2 explains our implementations of size-1440, size-1536, and size-1728
convolutions. Section 4.3 introduces our choices of convolutions for NTT-based polynomial
multiplications in NTRU and NTRU Prime.

4.1 Dedicated Vector–Radix Butterflies
We first introduce how to implement radix-(2, 3) butterflies while permuting the coefficients
with Good–Thomas FFT. For simplicity, we illustrate the idea for R[x]

/〈
x6 − 1

〉
. Let

e0 and e1 be idempotent elements in Z6 realizing i = (e0(i mod 2) + e1(i mod 3)) mod 6.

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 361

Given coefficients (c0, . . . , c5), we define ci0,i1 as ce0i0+e1i1 . It is clear that introducing
the equivalence x ∼ x(0)x(1) converts the polynomial

∑5
i=0 cix

i into the polynomial∑2
i0=0

∑1
i1=0 ci0,i1

(
x(0))i0 (x(1))i1 . If c3 = c4 = c5 = 0, then we have c1,0 = c0,1 = c1,2 = 0.

We define the characteristic vector of (ci0,i1) as (J(e0i0 + e1i1) mod 6 ≥ 3K) where JK is the
Iverson bracket. If the higher half of the input is all zeros, then there are six different
characteristic vectors if we permute with Good–Thomas FFT by a combinatorial argument.
We implement all of them in our NTTs. We illustrate (Alg. 5) our implementation for

(J(e0i0 + e1i1) mod 6 ≥ 3K) =
(

1 0 1
0 1 0

)
. We call it _6_ntt_101, since the characteristic

vector is determined by (c0,0, c0,1, c0,2) because x ∼ x(0)x(1). In short, we need 17 cycles.
For the other dedicated radix-(2, 3) butterflies2, we need 12, 17, 12, 17, and 18 cycles

respectively. For our size-1536 convolution that will be shown in Section 4.2, there are in
total 1536

6 = 256 radix-(2, 3) butterflies. Approximately, 1
3 of them are 12 cycles, and 2

3 of
them are 17 cycles, We omit the details and refer readers to the code. If we agree 15 1

3

cycles are required on average, then we save 9·2+2·3−15 1
3

6 ≈ 1.44 cycles for each entry.

Algorithm 5 _6_ntt_101.
Input: (

c0 c2 c4
c1 c3 c5

)
=
(
c0,0 0 c0,2
0 c1,1 0

)
Output:(

c0 c2 c4
c1 c3 c5

)
=
(
ĉ0,0 ĉ0,1 ĉ0,2
ĉ1,0 ĉ1,1 ĉ1,2

)
=
(
NTTR[x(0)]:2:ω2

⊗ NTTR[x(1)]:3:ω3

)(c0,0 0 c0,2
0 c1,1 0

)
1: mMul_des_32 t, c5, c4, ω3, c1 . c5 = ω3c0,2
2: add c2, c4, c5 . c2 = −ω2

3c0,2
3: sub c2, c0, c2 . c2 = c0,0 + ω2

3c0,2
4: add c5, c5, c0 . c5 = c0,0 + ω3c0,2
5: add c0, c0, c4 . c0 = c0,0 + c0,2
6: mMul_des_32 c1, t, c3, ω3, c4 . t = ω3c1,1
7: add c4, c3, t . c4 = −ω2

3c1,1
8: add c0, c0, c3 . c0 = ĉ0,0
9: sub c1, c0, c3, lsl #1 . c1 = ĉ1,0
10: add c2, c2, t . c2 = ĉ0,1
11: sub c3, c2, t, lsl #1 . c3 = ĉ1,1
12: add c5, c5, c4 . c5 = ĉ1,2
13: sub c4, c5, c4, lsl #1 . c4 = ĉ0,2

4.2 Implementing Convolutions

In this section, we describe in detail our chosen transformations. We illustrate the details
of our size-1728 convolution because it is the most complicated one and because it includes
all the ideas. We also denote each ∼= as an isomorphism corresponding to a level of
computation. Table 4 summarizes the transformations for convolutions, and Table 5
summarizes the implementations of transformations.

2named _6_ntt_011, _6_ntt_110, _6_ntt_100, _6_ntt_010, and _6_ntt_001, respectively

362 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

Table 4: Summary of transformations.

Convolution Transformation
This work [ACC+21] [CHK+21]

Size-1440 NTTR[x(0)]:5:ω5 ⊗ NTTR[x(1)]:160:ω32 - -
Size-1536 NTTR[x(0)]:3:ω3 ⊗ NTTR[x(1)]:512:ω128 NTTR[x(0)]:512:ω512 ⊗ I3 NTTR[x(0)]:512:ω512 ⊗ I3
Size-1728

(
NTTR̄[x(0)]:9:ω9

⊗ NTTR̄[x(1)]:64:ω64

)
⊗ I3 - NTTR[x]:1728:ω576

Table 5: Summary of implementations.
Transformation NTT base multiplication

NTTR[x(0)]:5:ω5 ⊗ NTTR[x(1)]:160:ω32 2× radix-(3, 2) + 3-layer radix-2 5× 5 schoolbook
NTTR[x(0)]:3:ω3 ⊗ NTTR[x(1)]:512:ω128 radix-(3, 2) + 2× 3-layer radix-2 4× 4 schoolbook(

NTTR̄[x(0)]:9:ω9
⊗ NTTR̄[x(1)]:64:ω64

)
⊗ I3 2× radix-(3, 2) + 4-layer radix-2 3× 3 schoolbook

Size-1728 convolution. First of all, we introduce the equivalence x3 ∼ x(0)x(1) to perform
an incomplete permutation for Good–Thomas FFT. We now regard R̄ = Zq′ [x]

〈x3−x(0)x(1)〉 as

the coefficient ring. Since 1728
3 = 9 · 64, we perform a 2-dimensional FFT defined over the

ring R̄[x(0),x(1)]〈
(x(0))9−1,(x(1))64−1

〉 with vector-radix FFT. Our vector-radix FFT is built upon the

tensor product of the size-9 CT FFT on R̄[x(0)]
/〈(

x(0))9 − 1
〉

and the size-64 CT FFT

on R̄[x(1)]
/〈(

x(1))64 − 1
〉
. We apply one level of dedicated radix-(2, 3) butterflies, one

level of radix-(2, 3) butterflies, and one level of 4-layer radix-2 butterflies. For applying
radix-(2, 3) butterflies, we merge the multiplications of twiddles from different dimensions
into the improved radix-3 butterflies. The main reason for introducing the equivalence
x3 ∼ x(0)x(1) is to permute the coefficients without a blow of code size as explained
in Section 3.2. If we instead introduce x ∼ x(0)x(1), then there is no hope to permute
on-the-fly and compute dedicated radix-(2, 3) butterflies at the same time with compact
code size. The entire computation computes takes the following route from Zq′ [x]

〈x1728−1〉

radix-(3, 2)∼=
∏2
i0=0

∏1
i1=0 R̄[x(0), x(1)]

/〈(
x(0))3 − ω3i0

9 ,
(
x(1))32 − ω32rev(2)(i1)

64

〉
radix-(3, 2)∼=

∏2
i0,0,i0,1=0

∏3
i1=0

R̄[x(0),x(1),y(0)]〈
x(0)−ω

i0,0
9 y(0),y(0)−ω

3i0,1
9 ,(x(1))16−ω

16rev(2:2)(i1)
64

〉
=

∏8
i0=0

∏3
i1=0

(
R̄[x(0), x(1)]

/〈
x(0) − ωrev(3:2)(i0)

9 ,
(
x(1))16 − ω16rev(2:2)(i1)

64

〉)
4-layer radix-2∼=

∏8
i0=0

∏63
i1=0

(
R̄[x(0), x(1)]

/〈
x(0) − ωrev(3:2)(i0)

9 , x(1) − ωrev(2;6)(i1)
64

〉)
=

∏8
i0=0

∏63
i1=0

(
Zq′ [x]

/〈
x3 − ωrev(3:2)(i0)

9 ω
rev(2:6)(i1)
64

〉)
.

Comparison to [CHK+21]. We compare our implementation to the size-1728 convolution
by [CHK+21]. There are two differences: (i) the number of distinct twiddle factors for NTTs,
and (ii) the approach for computing the result of a size-576 NTT. For (i), they required
9 + 31 + 63 · 8 = 544 distinct twiddle factors in their NTTs. We require 9 + 9 · 1 + 30 = 48
distinct twiddle factors where the 9 ·1 are the twiddles ωi09 ω

16
64 used in the vector–radix FFT.

This implies fewer memory operations. For (ii), we compute the result of 1-dimensional size-
576 NTT with 2-dimensional FFT where [CHK+21] computes the result of 1-dimensional
size-576 NTT with 1-dimensional FFT. There are two benefits: the 2-dimensional FFT
requires fewer multiplications than the 1-dimensional FFT regardless of whether half of the
inputs are zeros, and (ii) dedicated radix-(2, 3) butterflies save approximately 1.44 cycles
for each entry while dedicated 3-layer radix-2 butterflies save only 1 cycle for each entry.

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 363

Size-1440 convolution. Let R = Zq′ . We introduce the equivalence x ∼ x(0)x(1),(
x(0))9 ∼ 1, and

(
x(1))160 ∼ 1, and compute the 2-dimensional transformation NTTR[x(0)]:9:ω9⊗

NTTR[x(1)]:160:ω32 with one level of dedicated radix-(2, 3) butterflies, one level of radix-(2, 3)
butterflies, and one level of 3-layer radix-2 butterflies.

Size-1536 convolution. Let R = Zq′ . For computing a size-1536 convolution, [ACC+21]
and [CHK+21] compute with Good–Thomas FFT by introducing the equivalence x ∼
x(0)x(1),

(
x(0))3 ∼ 1, and

(
x(1))512 ∼ 1. They then compute three size-512 NTTs and

512 3× 3 convolutions. We introduce the same equivalence but proceed differently. We
compute the 2-dimensional transformation NTTR[x(0)]:3:ω3 ⊗ NTTR[x(1)]:512:ω128 with one level
of dedicated radix-(2, 3) butterflies and two levels of 3-layer radix-2 butterflies.

Comparison to [ACC+21]. We now explain why dedicated radix-(2, 3) butterflies are
more favorable than the Good–Thomas FFT with dedicated 3-layer radix-2 butterflies
by [ACC+21]. For simplicity, we compare the computation of R[x]

/〈
x24 − 1

〉
since

24 = 8 · 3 = 6 · 4 where the upper half of the coefficients are all zeros. The computation
of [ACC+21] can be simplified as applying dedicated 3-layer radix-2 butterflies followed
by 3 × 3 convolutions and the inverses of 3-layer radix-2 butterflies. After carefully
counting the arithmetic cycles of implementations by [ACC+21], approximately 31 cycles
are required for dedicated 3-layer radix-2 butterflies, 39 cycles are required for inverses
3-layer radix-2 butterflies, and 15 cycles are required for a 3× 3 convolution. Therefore,
31 · 3 · 2 + 15 · 8 + 39 · 3 = 432 cycles are required for a size-24 convolution.

We first assume that a dedicated radix-(2, 3) butterflies take 15 1
3 cycles on average

(this is not true for a size-24 convolution, but it is true for our size-1536 and size-1728
convolutions), a 4 × 4 schoolbook takes 30 cycles, and a radix-(2, 3) butterfly takes
9 · 2 + 2 · 3 = 24 cycles. Then we only need 15 1

3 · 4 · 2 + 30 · 6 + 24 · 4 ≈ 399 cycles, only 92%
of the approach by [ACC+21]. The actual saving is larger since after computing dedicated
radix-(2, 3) butterflies, we reach layer 1 of the dimension of radix-2 while applying dedicated
3-layer radix-2 butterflies by [ACC+21] ends up the layer 3 of the dimension of radix-2.
This implies that they need more Montgomery multiplications for the follow up 2 levels of
3-layer radix-2 butterflies.

4.3 Multi-Parameter Support
As alluded to earlier, each of our NTT-based convolutions supports the polynomial
multiplications of more than one parameter of NTRU and NTRU Prime. We compute
the result in Z[x] with a chosen NTT-based convolution, and call the specific routine
final_map for reducing the result to the target polynomial ring. Among our polynomial
multiplications, this is the only difference for comparable parameter sets. Furthermore, our
NTT-based convolutions for parameters with larger polynomial degrees apply to polynomial
multiplications of the smaller parameter sets. Table 6 summarizes the applicability of our
NTT-based convolutions. We discuss some possible scenarios demonstrating the benefits
in reducing engineering effort.

If more than one comparable parameter is selected by NIST or other institutions (cf.
OpenSSH). The first scenario is when more than one comparable parameter sets are
selected by multiple institutions. The state-of-the-art polynomial multiplications for
NTRU [IKPC22] apply only to the polynomial rings selected by NTRU. Adapting their
multipliers incurs two significant performance penalties: (i) the arithmetic in NTRU is
in Z2k while we need Zq for a prime q in NTRU Prime; and (ii) the polynomial moduli
xp − x− 1 in NTRU Prime are incompatible to the structure of Toeplitz matrices without
doubling the sizes of convolutions. (i) implies many modular reductions in Zq for a prime

364 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

q, and (ii) implies one has to double the sizes of target convolutions. Next, the state-of-
the-art polynomial multiplications for NTRU Prime [Che21] rely on the special structure
of coefficient rings for choosing the sizes of convolutions. They are therefore not applicable
to NTRU. On the other hand, for comparable parameters in NTRU and NTRU Prime,
we only need to replace the final_map reducing to the target polynomial rings while the
other parts, including NTT, NTT_small, basemul, and iNTT, remain the same.

Table 6: Summary of the applicability of NTT-based convolutions. Starred checkmarks
are implemented in this paper.

NTRU (n, q) NTRU Prime (p, q)
Conv. (677, 2048) (701, 8192) (821, 4096) (653, 4621) (761, 4591) (857, 5167)
Size-1440 X∗ X∗ - X∗ - -
Size-1536 X∗ X∗ - X∗ X∗ -
Size-1728 X X X∗ X X X∗

If more than one parameter of a single scheme are selected for the Cortex-M4. Sup-
pose we want to deploy multiple parameters of a scheme X on the Cortex-M4 where X is
NTRU or NTRU Prime. The state-of-the-art polynomial multiplications for NTRU Prime
on Cortex-M4 require one to provide a different source code for the multipliers. On the
other hand, each of our convolutions supports polynomial multiplications up to a certain
size. In the extreme case, our size-1728 convolution suffices for all parameters of X with
a modified final_map. For the state-of-the-art polynomial multiplications for NTRU on
Cortex-M4, the Toeplitz-matrix-based approach supports smaller parameters by padding
some zeros. However, our more compact implementations are already faster than their
unrolled multipliers as we will see in the next section.

5 Results
This section reports the performance numbers of our implementations. We will first describe
our benchmark environment in Section 5.1. We will then go through the implementations
of convolutions in Section 5.2 and illustrate their impact on NTRU and NTRU Prime in
Section 5.3. All of our implementations target “big by small” polynomial multiplications
in NTRU and NTRU Prime.

5.1 Benchmark Environment
We target the STM32F407-DISCOVERY board featuring an STM32F407VG Cortex-M4 micro-
controller with 196 kB of SRAM and 1 MB of flash. Our benchmarking setup is based
on pqm4 [KRSS]. We clock at 24 MHz for benchmarking entire schemes. For individual
functions, we clock at 24 MHz for consistent setup in the literature. Furthermore, we
include cycle counts at 168 MHz to demonstrate the impact of code size. Although our
code size optimization is specific to our board, our programs are designed with flexible
loop-unrolling by simply adjusting the numbers.

5.2 Performance of Polynomial Multiplications
We compare our implementations to existing works. Table 7 compares our work to [ACC+21,
CHK+21, Che21, IKPC22]. We also show the detailed numbers of our implementations in
Table 8.

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 365

Table 7: Benchmarks of polynomial multiplications. Numbers are rounded to the nearest
thousands. We benchmark our implementations at both 24 MHz and 168 MHz. The
first number is benchmarked at 24 MHz and the second one is benchmarked at 168 MHz.
Implementations in the literature are all reported at 24 MHz by the authors.

NTRU
(n, q) Convolution This work [CHK+21] [IKPC22]

(677, 2048)
Size-677 −/− −/− 144k/−
Size-1440 140k/143k −/− −/−
Size-1536 147k/149k 156k/− −/−

(701, 8192)
Size-701 −/− −/− 144k/−
Size-1440 141k/143k −/− −/−
Size-1536 148k/150k 156k/− −/−

(821, 4096) Size-821 −/− −/− 193k/−
Size-1728 178k/182k 199k/− −/−

NTRU Prime
(p, q) Convolution This work [ACC+21] [Che21]1

(653, 4621) Size-1320 −/− −/− 120k/−
Size-1440 142k/147k −/− −/−

(761, 4591)
Size-1530 −/− 152k/− 142k/−
Size-1536 151k/153k 159k/− −/−
Size-1620 −/− 185k/− −/−

(857, 5167) Size-1722 −/− −/− 203k/−
Size-1728 182k/186k −/− −/−

1 Method 2, NTT-based polynomial multiplications without changing coefficient rings.

5.2.1 Polynomial Multiplications in NTRU

For ntruhps2048677, our size-1440 convolution outperforms the size-677 convolution
from [IKPC22] by 2.8% and the size-1536 convolution from [CHK+21] by 10.3%. Our size-
1536 convolution is slower than [IKPC22] but still faster than [CHK+21]. For ntruhrss701,
we have similar results. For ntruhps4096821, our size-1728 convolution outperforms the
size-821 convolution from [IKPC22] by 7.8% and the size-1728 convolution from [CHK+21]
by 10.6%. Notice that when benchmarking at full speed (168 MHz), we only pay 1.3%−3.5%
additional cycles. After carefully examining the implementations by [IKPC22], their
implementations are fully unrolled. Although we believe that their implementations can be
made much more compact with some care, our implementations at 168 MHz are already
faster than their implementations at 24 MHz. This implies for practical deployment,
users have a much wider range of frequency to fit the implementations into their use
without sacrificing performance. Additionally, no algebraic properties are exploited in our
implementations, while [IKPC22] only applies to (weighted) convolutions. Therefore, with
little modifications, our implementations support polynomial multiplications in NTRU
Prime as shown in the next section.

5.2.2 Polynomial Multiplications in NTRU Prime

We compare our polynomial multiplications to [ACC+21] and [Che21, Method 2]. Notice
that the implementations by [Che21] made use of the special structures of the coefficient
rings. For ntrulpr857/sntrup857, our size-1728 convolution outperforms the size-1722
convolution from [Che21] by 10.3%. For ntrulpr761/sntrup761, our size-1536 convolution
outperforms all the implementations by [ACC+21], but it is slower than the size-1530

366 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

convolution by [Che21]. For ntrulpr653/sntrup653, our size-1440 convolution is slower
than the size-1320 convolution by [Che21].

Finally, we emphasize again that most of the effort is spent on exploring suitable sizes
of convolutions supporting a wide range of polynomial multiplications. Since we make
no assumptions on the algebraic structure, with few modifications, our implementations
support NTRU and NTRU Prime while balancing between performance and code size,
which is much more practical for deployment and extension.

5.2.3 Detailed Numbers for Polynomial Multiplications

We go through the detailed numbers of our polynomial multiplications. Each of our
convolutions supports at least one parameter set of NTRU and one parameter set of
NTRU Prime. Our size-1440 convolution supports ntruhps2048677, ntruhrss701, and
ntrulpr653/sntrup653. The implementations are exactly the same except for the final_-
maps, which are tuned with the reduction to target polynomial rings. Our size-1536
convolution supports ntruhps2048677, ntruhrss701, and ntrulpr761/sntrup761 with
only differences in final_maps. Our size-1728 convolution supports ntruhps4096821, and
ntrulpr857/sntrup857 with only differences in final_maps. Table 8 is the summary.

Table 8: Performance of polymuls in NTRU and NTRU Prime on Cortex-M4.
NTRU

(n, q) Size polymul NTT NTT_small basemul iNTT final_map

(677, 2048) 1440 140 444 34 102 33 241 27 690 36 756 8 835
143 016 34 963 34 093 27 825 37 214 9 208

(677, 2048) 1536 147 126 37 485 36 573 23 322 41 437 8 489
149 174 38 076 37 139 23 506 42 001 8 717

(701, 8192) 1440 140 577 34 102 33 241 27 690 36 756 8 968
143 239 34 957 34 087 27 819 37 208 9 431

(701, 8192) 1536 147 670 37 485 36 573 23 322 41 437 9 033
149 771 38 076 37 139 23 506 42 001 9 314

(821, 4096) 1728 181 534 48 629 47 627 21 848 53 098 10 512
186 197 49 480 48 507 22 349 55 569 10 564

NTRU Prime
(p, q) Size polymul NTT NTT_small basemul iNTT final_map

(653, 4621) 1440 142 244 34 104 33 244 27 690 36 756 10 629
146 665 34 992 34 095 27 813 37 214 12 823

(761, 4591) 1536 151 374 37 487 36 573 23 322 41 435 12 739
153 299 38 069 37 138 23 510 42 001 12 861

(857, 5167) 1728 184 714 48 629 47 623 21 848 53 099 13 695
189 523 49 483 48 499 22 336 55 720 13 743

5.3 Schemes
Table 9 summarizes our work about NTRU on Cortex-M4 and Table 10 is about NTRU
Prime on Cortex-M4. We also optimize the crypto_sort.

5.3.1 NTRU Performance

Aside from our NTT-based multiplications, we collect various optimizations applicable
to NTRU, including the fast constant-time GCD for NTRU implemented by [Li21], the
crypto_sort in NTRU Prime, and the TMVP for NTRU by [IKPC22]. The overall
performance is summarized in Table 9.

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 367

We first compare the encapsulations. For ntruhps2048677 and ntruhps4096821, we
outperform [IKPC22] by 35.7%−36.3%. The majority of the improvement comes from
the more optimized crypto_sort. A fair comparison is ntruhrss701, where the only
difference is one big by small polynomial multiplication. We outperform [IKPC22] by 2.2%
for ntruhrss701.

For decapsulations, the differences between our implementations and the TMVP
by [IKPC22] are one big by small polynomial multiplication and one polynomial multipli-
cation in Z3. We outperform [IKPC22] by 0.7%−1.5%.

Our NTT-based multiplications have a limited impact on key generation. Key gen-
erations are dominated by computing inverses in Zq[x]/〈xn − 1〉 . The inverses are first
computed in Z2[x]/〈xn − 1〉 and then lifted to Zq[x]/〈xn − 1〉 . [Li21] implemented the
inverses in Z2[x]/〈xn − 1〉 with the fast constant-time GCD by [BY19]. [IKPC22] applied
their improved polynomial multiplications to lifting Z2[x]/〈xn − 1〉 to Zq[x]/〈xn − 1〉 . We
simply integrate their work, and plug in the more improved crypto_sort. The majority
of the improvement comes from [Li21]. For the rest, the improvement mainly comes from
the more improved crypto_sort and [IKPC22] for lifting to Zq[x]/〈xn − 1〉 .

Table 9: NTRU cycle counts of the fastest approaches in this work.

ntruhps2048677 ntruhrss701 ntruhps4096821
K E D K E D K E D

[CHK+21] 143 725k 821k 818k 153 403k 377k 871k 207 495k 1 027k 1 030k
[IKPC22] 142 378k 816k 729k 153 479k 369k 787k 212 377k 1 026k 914k
[Li21]1 4 625k 820k 812k 4 233k 376k 868k 6 116k 1 027k 1 031k
This work 3 912k 525k 718k 3 822k 361k 778k 5 217k 654k 908k
1 Integrated into pqm4 in commit 2691b4915b76db8b765ba89e4e09adc6b999763f.

5.3.2 NTRU Prime Performance

We apply our NTT-based multiplications to all the big by small polynomial multiplications
in NTRU Prime. We replace AES with secret-dependent input by the fixslicing AES
in [AP21]. This increases the overall performance numbers of NTRU LPRime. Furthermore,
we improve the crypto_sort. Table 10 summarizes the overall performance numbers.

We first compare NTRU LPRime. [ACC+21] reported performance numbers with
an AES implementation with secret-dependent table lookup. At the same time, [AP21]
proposed fixslicing AES. The timings increase drastically by changing to fixslicing AES for
secret-dependent operations. Therefore, our ntrulpr761 is slower than the fastest approach
by [ACC+21] even though our polynomial multiplication is comparable to [ACC+21]. A
fair comparison is comparing against [Che21]. For ntrulpr653 and ntrulpr761, since our
polynomial multiplications are slower than [Che21], the overall performance is expected to
be slower. However, during the encapsulation, [Che21] computed two multiplications by
a polynomial with two polynomial multiplications. We instead cache the NTT of one of
the operands and reuse it later. This explains why our encapsulations are faster while key
generations and decapsulations are slower than [Che21].

Next, we compare Streamlined NTRU Prime. In Streamlined NTRU Prime, we need
crypto_sort in key generations and encapsulations. Since we optimize the crypto_sort,
our key generations are faster than [Che21] even though our polynomial multiplications are
slower than [Che21]. Our decapsulations are slower than [Che21] since the only difference
is two generic-by-ternary polynomial multiplications.

Finally, we present the performance numbers of ntrulpr857 and sntrup857.

368 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

Table 10: NTRU Prime cycle counts for the fastest approaches in this work.

ntrulpr653 ntrulpr761 ntrulpr857
K E D K E D K E D

[ACC+21]2 - - - 731k 1 102k 1 200k - - -
[Che21]3 678k 1 158k 1 233k 727k 1 312k 1 394k - - -
This work 669k 1 131k 1 231k 710k 1 266k 1 365k 886k 1 465k 1 596k

sntrup653 sntrup761 sntrup857
K E D K E D K E D

[ACC+21]2 - - - 10 778k 694k 572k - - -
[Che21]3 6 715k 632k 487k 7 951k 684k 538k - - -
This work 6 623k 621k 527k 7 937k 666k 563k 10 192k 812k 685k

2 uses secret-dependent table lookup AES, see https://github.com/mupq/pqm4/pull/173 for details.
3 [Che21, Method 2] is integrated into pqm4 in commit 844e7cafdb5df8416abef3c03b49edb810b7e396.

Acknowledgments
This research is indebted to Taiwan Ministry of Sci. and Tech. grants 110-2221-E-001-008-
MY3 and 111-2119-M-001-004, Academia Sinica Investigator Award AS-IA-109-M01, and
the Cybersecurity Center of Excellence Project at Nat’l Applied Research Labs, Taiwan.

References
[AB74] Ramesh C. Agarwal and Charles S. Burrus. Fast convolution using Fermat

number transforms with applications to digital filtering. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 22(2):87–97, 1974.

[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-
M4 optimizations for {R, M} LWE schemes. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(3):336–357, 2020. https://tches.iacr.
org/index.php/TCHES/article/view/8593.

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial Multiplication
in NTRU Prime Comparison of Optimization Strategies on Cortex-M4. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):217–
238, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8733.

[ACC+22] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang, Matthias J.
Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for Saber on Cortex-M3
and Cortex-M4. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):127–151, 2022. https://tches.iacr.org/index.php/TCHES/
article/view/9292.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Dann
Sprenkels. Faster Kyber and Dilithium on the Cortex-M4. 2022. To appear at
ACNS 2022, available as https://eprint.iacr.org/2022/112.

[AP21] Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like Ciphers. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):402–
425, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8739.

https://github.com/mupq/pqm4/pull/173
https://tches.iacr.org/index.php/TCHES/article/view/8593
https://tches.iacr.org/index.php/TCHES/article/view/8593
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://eprint.iacr.org/2022/112
https://tches.iacr.org/index.php/TCHES/article/view/8739

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 369

[ARM10] ARM. Cortex-M4 Technical Reference Manual, 2010. https://developer.arm.
com/documentation/ddi0439/b/.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor. In CRYPTO 1986,
LNCS, pages 311–323. SV, 1986.

[BBC+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri,
Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Submission to
the NIST Post-Quantum Cryptography Standardization Project [NIS], 2020.
https://ntruprime.cr.yp.to/.

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians. 2001.

[BHK+22] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72
and Apple M1. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):221–244, 2022. https://tches.iacr.org/index.php/TCHES/
article/view/9295.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-Efficient
High-Speed Implementation of Kyber on Cortex-M4. In Progress in Cryp-
tology - AFRICACRYPT 2019, volume 11627 of Lecture Notes in Com-
puter Science, pages 209–228. Springer, 2019. https://doi.org/10.1007/
978-3-030-23696-0_11.

[BMK+22] Hanno Becker, Jose Maria Bermudo Mera, Angshuman Karmakar, Joseph
Yiu, and Ingrid Verbauwhedeg. Polynomial multiplication on embedded vector
architectures. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):482–505, 2022. https://tches.iacr.org/index.php/TCHES/
article/view/9305.

[Bou89] Nicolas Bourbaki. Algebra I. Springer, 1989.

[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation
and modular inversion. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):340–398, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/8298.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Submission
to the NIST Post-Quantum Cryptography Standardization Project [NIS], 2020.
https://ntru.org/.

[CF94] Richard Crandall and Barry Fagin. Discrete Weighted Transforms and Large-
integer Arithmetic. Mathematics of computation, 62(205):305–324, 1994.

[Che21] Yun-Li Cheng. Number Theoretic Transform for Polynomial Multiplication
in Lattice-based Cryptography on ARM Processors. Master’s thesis, 2021.
https://github.com/dean3154/ntrup_m4.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-
unfriendly Rings New Speed Records for Saber and NTRU on Cortex-M4
and AVX2. IACR Transactions on Cryptographic Hardware and Embedded

https://developer.arm.com/documentation/ddi0439/b/
https://developer.arm.com/documentation/ddi0439/b/
https://ntruprime.cr.yp.to/
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/978-3-030-23696-0_11
https://tches.iacr.org/index.php/TCHES/article/view/9305
https://tches.iacr.org/index.php/TCHES/article/view/9305
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://ntru.org/
https://github.com/dean3154/ntrup_m4

370 Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

Systems, 2021(2):159–188, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8791.

[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[FP07] Franz Franchetti and Markus Puschel. SIMD Vectorization of Non-Two-Power
Sized FFTs. In 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing-ICASSP’07, volume 2, 2007.

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly Coupled
RISC-V Accelerators for Post-Quantum Cryptography. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020(4):239–280, 2020.
https://tches.iacr.org/index.php/TCHES/article/view/8683.

[Für09] Martin Fürer. Faster Integer Multiplication. SIAM Journal on Computing,
39(3):979–1005, 2009. https://doi.org/10.1137/070711761.

[GKS21] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Compact
Dilithium Implementations on Cortex-M3 and Cortex-M4. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(1):1–24, 2021. https:
//tches.iacr.org/index.php/TCHES/article/view/8725.

[Goo58] I. J. Good. The Interaction Algorithm and Practical Fourier Analysis. Journal
of the Royal Statistical Society: Series B (Methodological), 20(2):361–372, 1958.

[Goo71] I. J. Good. The relationship between two fast fourier transforms. IEEE Trans-
actions on Computers, 100(3):310–317, 1971.

[GS66] W. M. Gentleman and G. Sande. Fast Fourier Transforms: For Fun and Profit.
In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference,
AFIPS ’66 (Fall), pages 563–578. Association for Computing Machinery, 1966.
https://doi.org/10.1145/1464291.1464352.

[HMCS77] David B. Harris, James H. McClellan, David S. K. Chan, and Hans W.
Schuessler. Vector Radix Fast Fourier Transform. In ICASSP’77. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 2, pages
548–551, 1977.

[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time O (n
log n). Annals of Mathematics, 193(2):563–617, 2021.

[IKPC20] Írem Keskinkurt Paksoy and Murat Cenk. TMVP-based Multiplication for
Polynomial Quotient Rings and Application to Saber on ARM Cortex-M4.
Cryptology ePrint Archive, 2020. https://eprint.iacr.org/2020/1302.

[IKPC22] Írem Keskinkurt Paksoy and Murat Cenk. Faster NTRU on ARM Cortex-M4
with TMVP-based multiplication. 2022. https://eprint.iacr.org/2022/300.

[Jac12] Nathan Jacobson. Basic Algebra II. Courier Corporation, 2012.

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster Mul-
tiplication in Z2m [x] on Cortex-M4 to Speed up NIST PQC Candidates. In
International Conference on Applied Cryptography and Network Security, pages
281–301. Springer, 2019.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4.

https://tches.iacr.org/index.php/TCHES/article/view/8791
https://tches.iacr.org/index.php/TCHES/article/view/8791
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://doi.org/10.1137/070711761
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://doi.org/10.1145/1464291.1464352
https://eprint.iacr.org/2020/1302
https://eprint.iacr.org/2022/300
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

Erdem Alkim, Vincent Hwang and Bo-Yin Yang 371

[Li21] Ching-Lin Li. Implementation of Polynomial Modular Inversion in Lattice-
based cryptography on ARM. Master’s thesis, 2021. https://github.com/
trista5658321/polyinv-m4.

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to module-
lattice based cryptography. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(2):222–244, 2020. https://tches.iacr.org/index.
php/TCHES/article/view/8550.

[Mon85] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathe-
matics of computation, 44(170):519–521, 1985.

[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum
cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography.

[Pol71] John M. Pollard. The Fast Fourier Transform in a Finite Field. Mathematics of
computation, 25(114):365–374, 1971.

[Rad68] Charles M. Rader. Discrete fourier transforms when the number of data samples
is prime. Proceedings of the IEEE, 56(6):1107–1108, 1968.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. Cryptology ePrint Archive, Report 2018/039, 2018. https:
//eprint.iacr.org/2018/039.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[Tho63] Llewellyn Hilleth Thomas. Using a computer to solve problems in physics.
Applications of digital computers, pages 44–45, 1963.

[Win78] Shmuel Winograd. On Computing the Discrete Fourier Transform. Mathematics
of computation, 32(141):175–199, 1978.

https://github.com/trista5658321/polyinv- m4
https://github.com/trista5658321/polyinv- m4
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039

	Introduction
	Preliminaries
	Polynomial Multiplications in NTRU and NTRU Prime
	Cortex-M4
	Number–Theoretic Transforms
	Cooley–Tukey and Gentleman–Sande FFTs
	Good–Thomas FFT
	Vector–Radix FFT
	NTT Multiplications for NTT-unfriendly Rings

	Number–Theoretic Transforms
	Improving Non-Radix-2 Butterflies
	Code Size Consideration of Good–Thomas FFT
	Combining Cooley–Tukey, Good–Thomas, and Vector–Radix FFTs

	Implementations
	Dedicated Vector–Radix Butterflies
	Implementing Convolutions
	Multi-Parameter Support

	Results
	Benchmark Environment
	Performance of Polynomial Multiplications
	Schemes

