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Abstract. We improve the performance of lattice-based cryptosystems Dilithium on
Cortex-M3 with expensive multiplications. Our contribution is two-fold: (i) We gener-
alize Barrett multiplication and show that the resulting shape-independent modular
multiplication performs comparably to long multiplication on some platforms without
special hardware when precomputation is free. We call a modular multiplication
“shape-independent” if its correctness and efficiency depend only on the magnitude
of moduli and not the shapes of the moduli. This was unknown in the literature
even though modular multiplication has been studied for more than 40 years. In the
literature, shape-independent modular multiplications often perform several times
slower than long multiplications even if we ignore the cost of the precomputation.
(ii) We show that polynomial multiplications based on Nussbaumer fast Fourier
transform and Toom–Cook over Z2k perform the best when modular multiplications
are expensive and k is not very close to the arithmetic precision.
For practical evaluation, we implement assembly programs for the polynomial arith-
metic used in the digital signature Dilithium on Cortex-M3. For the modular multi-
plications in Dilithium, our generalized Barrett multiplications are 1.92 times faster
than the state-of-the-art assembly-optimized Montgomery multiplications, leading to
1.38−1.51 times faster Dilithium NTT/iNTT. Along with the improvement in accu-
mulating products, the core polynomial arithmetic matrix-vector multiplications are
1.71−1.77 times faster. We further apply the FFT-based polynomial multiplications
over Z2k to the challenge polynomial multiplication ct0, leading to 1.31 times faster
computation for ct0.
We additionally apply the ideas to Saber on Cortex-M3 and demonstrate their im-
provement to Dilithium and Saber on our 8-bit AVR environment. For Saber on
Cortex-M3, we show that matrix-vector multiplications with FFT-based polyno-
mial multiplications over Z2k are 1.42−1.46 faster than the ones with NTT-based
polynomial multiplications over NTT-friendly coefficient rings. When moving to
a platform with smaller arithmetic precision, such as 8-bit AVR, we improve the
matrix-vector multiplication of Dilithium with our Barrett-based NTT/iNTT by a
factor of 1.87−1.89. As for Saber on our 8-bit AVR environment, we show that matrix-
vector multiplications with NTT-based polynomial multiplications over NTT-friendly
coefficient rings are faster than polynomial multiplications over Z2k due to the large
k in Saber.
Keywords: Lattice-based cryptography · Dilithium · Saber · Barrett multiplication
· Microcontroller · Nussbaumer FFT · Toom–Cook

1 Introduction
At PQCrypto 2016, the National Institute of Standards and Technology (NIST) announced
the Post-Quantum Cryptography Standardization soliciting standards on post-quantum
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cryptography. Among various candidates, lattice-based cryptosystems usually exhibit rea-
sonably balanced public key, secret key, ciphertext, and signature sizes. In most lattice-based
cryptosystems, the designers choose between several algebraic structures while considering
various implementation considerations. In the specifications of Kyber [ABD+20b], a key
encapsulation mechanism standardized by NIST, and Dilithium [ABD+20a], a digital
signature standardized by NIST, the authors wrote specific number-theoretic transforms
(NTTs) over the so-called “NTT-friendly” primes to the schemes due to the quasi-linear
algebraic complexity of multiplying polynomials with NTTs. On the other hand, the
authors of Saber [DKRV20], a 3rd round KEM finalist, argued the efficiency of computing
modulo a power of two while resorting to Toom–Cook and Karatsuba with less performant
asymptotic runtime.

The software performance of polynomial multiplications has been extensively studied.
On high-end processors, [Sei18,CHK+21,NG21,SKS+21a,SKS21b,BBCT22,BHK+22b,
BMK+22,ORGF+22,ZHS+22,CCHY24,HLY24,Hwa24a] studied the interactions between
algebraic structures and vectorization. On low-end processors and platforms, [KRS19,
BKS19,MKV20, IKPC20,GKS21,ACC+21,CHK+21,ACC+22, IKPC22,AHY22] studied
various aspects of microcontroller implementations, including performance cycles, memory
usage, code size, and more. In these works, the designs of polynomial multipliers consist of (i)
specific approaches implementing modular multiplications with the designated instruction
set architectures/extensions and (ii) specific fast transformations converting the large
multiplication tasks into several small multiplication tasks.

In the literature, there are many popular lines of modular multiplications. We call a
modular multiplication “shape-independent” if its correctness and efficiency depend only
on the magnitude of moduli and not the shapes of the moduli. There are three lines of
shape-independent modular multiplications computing representatives of ab modulo q
with precomputations – Montgomery, Barrett, and Plantard. Montgomery multiplication
computes the modular product as the high part of the sum of long products [Mon85,Sei18].
Recently, [Pla21] proposed the unsigned Plantard multiplication using integer middle prod-
ucts, an operation that is no cheaper than a high multiplication1. The idea was later adapted
to the signed version by [HZZ+22] using special multiplication instructions unseen on most
of the architectures and by [AMOT22] using multiplication instructions with twice the
precision. Montgomery multiplication amounts to computing two long/high multiplications
and one low multiplication, and Plantard multiplication amounts to computing one middle
product and one long/high multiplication. This work proposes a shape-independent modu-
lar multiplication that performs comparably to a long multiplication on some platforms
without special hardware. We rely on two observations:

• Barrett multiplication: Barrett multiplication computes the modular product with
one high multiplication and two low multiplications [Sho,BHK+22b].

• Approximation nature of the high multiplication: In Barrett multiplication, the high
multiplication only needs to be approximately correct in contrast to Montgomery
and Plantard multiplications.

Contribution 1: We generalize the notion of approximation that is suitable for approximat-
ing the high multiplication with multi-limb arithmetic and show that the resulting
generalized Barrett multiplication performs comparably to long multiplication on
our platform, defying the expectation that modular multiplication, such as Mont-
gomery and Plantard multiplications, must amount to a long multiplication followed
by non-negligible computations. To the best of our knowledge, this is the first
time that shape-independent modular multiplication performs comparably to long

1Formally, one can implement a high multiplication with a middle product, so the cost of one middle
product cannot be cheaper than one high multiplication.
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multiplication on a platform like Cortex-M3 with a relatively simple cost model,
even though people have been studying modular multiplications for more than 40
years. We also believe that our Barrett multiplication performs the best on other
Cortex-M processors, such as Cortex-M0, Cortex-M0+, and Cortex-M23, with similar
characteristics.

The second part of the paper challenges the notion of “NTT-friendliness” of coefficient
rings in practice. Although FFT/NTT-based polynomial multiplication over arbitrary rings
was already known more than 20 years ago [CK91], several recent works presented NTTs
in severely restricted forms. NTT was usually presented as a fast transformation over an
“NTT-friendly” coefficient ring Zq for an odd q. In fact, NTTs can be defined over unital
and possibly non-commutative rings by manufacturing various “NTT-friendly” structures
while extending the polynomial rings.

Contribution 2: We propose a polynomial multiplier based on Nussbaumer FFT and
Toeplitz matrix-vector product built upon Toom-4 over Z2k , and show that the
resulting implementation performs the best when k is not very close to the arithmetic
precision. To the best of our knowledge, this is the first implementation of FFT-based
polynomial multipliers over Z2k . On the other hand, if k is close to the arithmetic
precision, we show that NTT-based polynomial multiplications over NTT-friendly
coefficient rings perform the best.

Our results bring insights into the impact of coefficient rings on polynomial multiplica-
tions. If the coefficient ring is an NTT-friendly one modulo a prime and the corresponding
long/high multiplications are slow, then one should use Barrett multiplication instead of
Montgomery multiplication. On the other hand, if the coefficient ring takes the form Z2k

and k is small enough, FFT-based polynomial multiplication over Z2k performs the best;
and when k is large, the standard NTT-based approach over NTT-friendly coefficient rings
performs the best.

Applications and limitations of our Barrett multiplications. For a positive integer
n, we identify Zn :=

[
−n

2 , n
2

)
∩ Z and define the map mod±n as the function mapping

an integer z to the element in Zn differing by a multiple of n. Let R be a power of two
with exponent a power of two, log2 R be the arithmetic precision, q be an odd modulus
with

√
R < q < R. For two integers a, b ∈ ZR, this work studies the computation of a

representative c ∈ ZR of ab modulo q. In practice, a modular multiplication usually admits
an integer B with q ≤ B ≤ R such that c ∈ ZB. We study the relations between the efficiency
of modular multiplications and the magnitude of q and B, and do not exploit the structure
of q other than being an odd integer2. In terms of the definability of shape-independent
modular multiplications, Barrett, Montgomery, and Plantard multiplications compute a
representative c ∈ ZB of ab modulo q with a pre-modular-multiplication by a constant in
the Barrett case and a post-modular-multiplication by a constant in the Montgomery and
Plantard cases. In our context, we focus on the 32-bit modular multiplications (R = 232) in
the Dilithium NTT/iNTT computations, where pre-modular-multiplications are carried out
during the design phase rather than the computation phase. By relaxing the worst-case3 of B
to be five times larger than prior signed Barrett multiplication [BHK+22b], our generalized
signed Barrett multiplication outperforms any other modular multiplications consisting of at
least one high/long multiplication and non-negligible pre-/post-computation on Cortex-M3,

2In fact, Barrett multiplication works when q is even, but the resulting computation requires a slightly
more involved justification and does not find applications in our context.

3By worst case, we mean the theoretical worst-case analysis, which does not imply that the resulting
bound is attainable. The new bound B could be smaller than the theoretical worst-case analysis in practice.
Typically, brute-force testing with ball analysis will reveal a much better bound. In this paper, we stick to
the theoretical worst-case analysis since the bound is much more modular than the brute-force approach.
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including Montgomery and Plantard multiplications as well as other approaches applying
specialized modular reductions to the long products. Furthermore, we also show that our
generalized Barrett multiplication only reduces the bit-sizes of valid moduli from 28.1926
to 26.0458 for an 8-layer 32-bit NTT with only the necessary modular multiplications.

Source code. Our source code is publicly available at https://github.com/vincentvbh/
PolyMul_Without_PowerfulMul.

2 Preliminiaries

2.1 Integer Approximation

For a function JK : R→ Z, [BHK+22b] call it an integer approximation if ∀r ∈ R, |r − JrK| ≤
1. Common examples are the floor function ⌊⌋, ceiling function ⌈⌉, and rounding-half-up
function ⌊⌉. [BHK+22b] chose ⌊⌉2 := r 7→ 2

⌊
r
2
⌉

and demonstrated its benefit for the
vector instruction set Neon in Armv8-A. It is easily seen that ⌊⌋ , ⌈⌉ , ⌊⌉ , ⌊⌉2 are all integer
approximations.

2.2 Modular Multiplications

Throughout this paper, we consider R = 232 and q < R an odd number, and focus on signed
arithmetic. For an integer approximation JK, we define the corresponding modular reduction
modJKq : Z → Z as modJKq := z 7→ z −

r
z
q

z
q. Furthermore, we define

∣∣modJKq
∣∣ :=

maxz∈Z
∣∣z mod JKq

∣∣. If JK = ⌊⌉, we denote mod⌊⌉ as mod±.

Arithmetic modulo R = 2m. In most modern platforms, since elements are usually
presented as bit strings with power-of-two bits, arithmetic modulo a power of two R = 2m

with m a power of two attributes to straightforward quantification of performance cycles.
For two m-bit integers a and b, we call an instruction long multiplication if it computes the
2m-bit result ab. If an instruction computes a value sufficiently close to the upper m bits
of ab, we call it a high multiplication. Further, we call an instruction low multiplication if
it computes a value sufficiently close to the lower m bits of ab. For simplicity, we also call
the subtractive and accumulative variants long, high, and low multiplications.

Montgomery multiplication. Let a, b ∈
[
− R

2 , R
2
)

be two m-bit integers. Montgomery
multiplication computes a representative of abR−1 mod q with two long multiplications
and one low multiplication as shown in Algorithm 1. Intuitively, we first compute a value
c satisfying c ≡ 0 (mod R), c ≡ ab (mod q), and |c| < |ab|+ Rq

2 . Since c
R is an integer and

R is coprime to q, we have c
R ≡ abR−1 (mod q).

Barrett multiplication. Barrett multiplication was first introduced only in the reduction
form, reducing a value by subtracting a reasonably approximated multiple of q [Bar86]. [Sho]
proposed the multiplicative form for unsigned arithmetic, and [BHK+22b] proposed the
signed multiplication with integer approximations as shown in Algorithm 2. [BHK+22b]
computed a representative of ab mod q by pulling the operand b to the approximation and
showed that the result is an m-bit value by establishing a correspondence between Barrett
and Montgomery multiplications and reusing the bound from Montgomery multipilication.

https://github.com/vincentvbh/PolyMul_Without_PowerfulMul
https://github.com/vincentvbh/PolyMul_Without_PowerfulMul
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Algorithm 1 Montgomery multiplica-
tion.
Inputs: a, b.
Output: c ≡ abR−1 mod ±q.

1: tfull = a · b
2: tlo = tfull mod ±R
3: q′ = −q−1 mod ±R
4: tlo = tlo · q′ mod ±R
5: tfull = tfull + tlo · q
6: c =

⌊ tfull
R

⌋

Algorithm 2 Barrett multiplication.
Inputs: a, b.
Output: c ≡ ab mod ±q.

1: tlo = a · b mod ±R

2: thi =
⌊

a·⌊ bR
q ⌉

R

⌉
3: c = tlo− (thi · q mod ±R)

A correspondence between Barrett and Montgomery multiplications. [BHK+22b]
showed that for an integer approximation JK, we have

ab−

a
r

bR
q

z

R

 q =
a

(
bR mod JKq

)
+

(
a

(
bR mod JKq

)
(−q−1) mod ±R

)
q

R
.

Their proof clearly transfers to the following generalization: For integer approximations
JK0 , JK1, we have

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q =
a

(
bR mod JK0q

)
+

(
a

(
bR mod JK0q

)
(−q−1) mod JK1R

)
q

R
.

Applying the correspondence, we have
∣∣∣∣ab−

s
aJ bR

q K0
R

{

1
q

∣∣∣∣ ≤ |a|| mod JK0 q|+| mod JK1 R|q
R . When

JK0 = JK1 = ⌊⌉, we have
∣∣∣∣ab−

s
aJ bR

q K0
R

{

1
q

∣∣∣∣ ≤ q
2

(
1 + |a|

R

)
.

2.3 Number Theoretic Transform
Let R be a commutative ring with identity. For an n-th root of unity ωn ∈ R, we call ωn

principal if ∀j = 1, . . . , n− 1,
∑n−1

i=0 ωij
n = 0. If there is a principal n-th root of unity for a

large n, we call R an “NTT-friendly” coefficient ring. In this paper, we only consider n

a power of two, whose condition is equivalent to ω
n
2

n = −1 [Für09, Lemma 2.1]. For an
invertible element ζ ∈ R, we have the following isomorphism by the Chinese remainder
theorem for polynomial rings:

R[x]
⟨xn − ζn⟩

∼=
∏ R[x]〈

x
n
2 ± ζ

n
2

〉 ∼= · · · ∼= ∏
i0,...,ilog2 n−1=0,1

R[x]〈
x− ζω

∑
j

ij2j

n

〉 .

This is the radix-2 Cooley–Tukey FFT for a discrete weighted transform [CT65,CF94].
We call ζ = ωn the cyclic case and ζ = ω2n the negacyclic case, and illustrate the idea in
Figure 1. If R = Z22t +1, this is called Fermat number transform (FNT) since 22t + 1 is a
Fermat number [SS71,AB74]. There are several benefits while operating in this coefficient
ring. First of all, since 22t = −1 ∈ Z22t +1, we have 2 a principal 2t+1-th root of unity for
Cooley–Tukey FFT. This improves the performance of twiddle factor multiplications since
multiplications by powers of two are fast [SS71,AB74,AHKS22,BHK+22a]. The second
benefit is the efficient modular reduction [SS71,AHKS22,BHK+22a].
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(a) NTT over x8 − 1 and over x4 + 1.
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(b) Inverse of NTT over x8 − 1 and over x4 + 1.

Figure 1: NTT and its inverse over x8 − 1 and x4 + 1. ωn = ω8/n where ω is a principal
8th root of unity, adapted from [ACC+22]. Computational flow goes from left to right.

2.4 Nussbaumer Fast Fourier Transform
Nussbaumer fast Fourier transform manufactures algebraic structures suitable for NTT-
based algebra homomorphisms, and the resulting transformation requires only additions
and subtractions [Nus80]. For simplicity, we illustrate the idea when the polynomial
modulus is a power-of-two cyclotomic polynomial.

The goal is to design fast transformations for the ring R[x]/⟨xn + 1⟩ with only additions
and subtractions in R where n = 2k. Conceptually, we chop a size-n polynomial into Θ (

√
n)

polynomials of size Θ (
√

n) while manufacturing principal roots of unity by zero-padding.
Formally, we choose an n′ = 2⌊

log n
2 ⌋ and rewrite R[x]/⟨xn + 1⟩ as R[x]

/〈
xn′ − y

〉
where

R = R[y]
/〈

y
n
n′ + 1

〉
. Since the x-degree of a product of two polynomials with coefficient

ring R is bounded by 2n′ − 2, one can choose a polynomial modulus with x-degree larger
than 2n′−2 for efficient computation. We replace the relation xn′ ∼ y with x2n′ ∼ 1 by zero-
padding. Since y

n
n′ = −1 in R by definition, y is a principal 2n

n′ -th root of unity supporting
a size- 2n

n′ radix-2 cyclic Cooley–Tukey FFT over R. By the choice of n′, 2n
n′ ≥ 2n′ and

R[x]
/〈

x2n′ − 1
〉

splits into polynomial rings of the form R[x]
/〈

x− yi
〉

with additions,
subtractions, and multiplications by powers of y in R. Since multiplications by powers
of y amount to negacyclic shifts, the entire transformation only requires additions and
subtractions in R. If we apply the idea recursively, then the computing task is converted
into Rh where h grows proportionally to n log2 n. In this work, we apply the idea only
once and switch to different approaches for the small-dimensional computing task.

2.5 Toeplitz Matrix-Vector Product
In lattice-based cryptography, the Toeplitz matrix-vector product (TMVP) was applied
to Saber and NTRU on Cortex-M4 [IKPC20, IKPC22], and NTRU and NTRU Prime on
Cortex-A72 [Hwa24a,CCHY24]. Conceptually, for an algebra homomorphism multiplying
polynomials in R[x], its module-theoretic dual implements a Toeplitz matrix-vector product
with the same algebraic complexity [Fid73, Win80, CCHY24]. We call a square matrix
Toeplitz if elements belonging to the same diagonal are the same, and a matrix-vector
product TMVP if the matrix is a Toeplitz matrix. Prominent examples are polynomial
multiplications modulo xn − ζ for a ζ ∈ R. Suppose we have an algebra homomorphism f
computing the product ab = f−1 (f(a)f(b)) of two size-n polynomials a, b in R[x], then
f∗ ◦

(
b′ 7→ f (a) b′)∗ ◦

(
f−1)∗ (b) computes the reversal of an n× n TMVP where ∗ is the

module-theoretic dualization, corresponding to matrix transposition in terms of matrix
manipulation.

Asymmetric nature of TMVP. The observation relevant to us is the asymmetric
nature of TMVP, which was first introduced under the name “asymmetric multiplication”
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in [BHK+22b]4: In practice, the dual of a module homomorphism usually results in the
same algebraic complexity. If f−1 is much more expensive than f , dualizing the entire
process and applying

(
f−1)∗ to the most frequently used operand is more advantageous. For

example, suppose we want to compute polynomial products a0b and a1b whose reversals
are Toeplitz matrix-vector products. If we proceed symmetrically, we need three (fast) f ’s
and two expensive f−1’s. We can instead dualize the maps and apply

(
f−1)∗ to b. The

remaining operations are equivalent to applying four f ’s, replacing an expensive f−1 by
an f∗.

A running example with Karatsuba. We illustrate the idea with Karatsuba [KO62]
shown in [Win80]. Suppose we have an algebra homomorphism computing (a0 + a1x)(b0 +
b1x) = a0b0 + (a0b1 + a1b0)x + a1b1x2 by first applying the forward map a0 + a1x 7→
(a0, a0 + a1, a1) to both operands. We then multiply the resulting images and apply the
“inversion map” (c0, c1, c2) 7→ c0 + (c1− c0− c2)x + c2x2. This gives us the desired product
a0b0 + (a0b1 + a1b0)x + a1b1x2. We illustrate how to turn the above computation into

a computation implementing the Toeplitz matrix-vector product
(

c1 c2
c0 c1

) (
a0
a1

)
. For

the vector, we compute (a0, a0 + a1, a1) same as before. As for the Toeplitz matrix, we
extract the elements c0, c1, c2 and apply the dual (or transpose in the matrix view) of the
“inversion map”. This gives us (c0−c1, c1, c2−c1). We then point-multiply them and receive
((c0 − c1)a0, c1(a0 + a1), (c2 − c1)a1). Finally, we apply the dual of (b0, b1) 7→ (b0, b0+b1, b1)
and receive (c0a0 + c1a1, c1a0 + c2a1), which is the reversal of the desired result.

Naming convention of TMVP. For an algebra homomorphism f multiplying poly-
nomials in R[x], we denote the resulting Toeplitz matrix-vector product as Toeplitz-f .
Furthermore, due to the asymmetric nature of TMVP, we denote Hom-V for the module
homomorphism applied to the vector operand and Hom-M for the module homomorphism
applied to the Toeplitz matrix operand. For the resulting small dimensional TMVP, we
denote it as BiHom since it is a bilinear map that is rarely a ring multiplication. Finally,
we denote Hom-I for the homomorphism mapping the resulting small dimensional products
to the desired result and call it an interpolation.

2.6 Dilithium
Dilithium [ABD+20a] is a digital signature based on “Fiat-Shamir with aborts” [Lyu09].
The security of Dilithium relies on the Module Small Integer Solutions and the Module
Learning with Errors problems. The module is a k × ℓ matrix over the polynomial ring
Rq := Zq[x]

/〈
x256 + 1

〉
where q = 223 − 213 + 1 is a prime and (k, ℓ) = (4, 4), (6, 5), (8, 7),

depending on the security level. See Table 1 for an overview of parameter sets.

Table 1: Dilithium parameters [ABD+20a] relevant to this work.
Parameter set NIST security level k ℓ η τ # rep.
dilithium2 II 4 4 2 39 4.25
dilithium3 III 6 5 4 49 5.1
dilithium5 V 8 7 2 60 3.85

During the key generation, we sample a k × ℓ matrix Â over the image of a negacyclic
NTT defined on Zq[x]/⟨xn + 1⟩ and two vectors s1 and s2 of polynomials with coefficients
drawn from {−η, . . . , 0, . . . , η}. We then compute the matrix-vector product As1 and add
s2 to the result. Finally, we round the result and hash (cf. Algorithm 3). In the signature

4See [Hwa22, Section 8.3.2] for their relations.
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generation, we compute a matrix-vector product where the vector is sampled with a nonce
(κ in Algorithm 5) as one of the parameters. We then compute a challenge polynomial
c with exactly τ ±1’s and 256− τ 0’s from the product and test if it meets the security
requirements. During the testing, we compute the vector of products cs1, cs2, and ct0
where s1 and s2 are the same as key generation and t0 a polynomial with coefficients
in

{
−212, . . . , 0, . . . , 212 − 1

}
(t0 is the lower part of the rounding in the key generation).

See Algorithm 5 for the details. If any tests fail, we increment the nonce and restart the
signature generation. In Table 1, we list the expected number of iterations for generating
a desired signature. In the signature verification, we compute a matrix-vector product (cf.
Algorithm 4).

This work optimizes the polynomial arithmetic. We outline the target operations of
this paper in Algorithms 3−5. Operations in blue are covered by this work and operations
in purple are covered by [HAZ+24] and this work. The polynomial arithmetic improvement
of [HAZ+24] does not apply to the operations in blue in Algorithms 3− 5.

Algorithm 3 Dilithium key generation.
Output: sk = (r, K, tr, s1, s2, t0)
Output: pk = (r, t1)

1: r ← {0, 1}256

2: K ← {0, 1}256

3: (s1, s2)← Sℓ
η × Sk

η

4: Â ∈ Rk×ℓ
q ← ExpandA(r)

5: ŝ1 ← NTT(s1)
6: t← NTT−1

(
Âŝ1

)
+ s2

7: (t1, t0)← Power2Round(t)
8: tr ∈ {0, 1}256 ← H(r||t1)

Algorithm 4 Dilithium verification.
Input: pk = (r, t1), M ∈ {0, 1}∗

Input: σ = (z, h, c̃)
Output: Valid or Invalid

1: Â ∈ Rk×ℓ
q ← ExpandA(r)

2: ẑ ← NTT(z)
3: µ ∈ {0, 1}384 ← H(H(r||t1)||M)
4: c← HB(c̃)
5: w′

1 ← NTT−1
(

Âẑ
)
− 2dct1

6: w′
1 ← UseHint(h, w′

1)
7: if c̃ ̸= H(µ||w′

1) or
8: ∥z∥∞ ≥ γ1 − β or
9: # 1’s in h ≤ ω then

10: return Invalid
11: end if

2.7 Cortex-M3
Cortex-M3 implements the instruction set architecture Armv7-M and is heavily used in
industry, including NXP general purpose microcontrollers5, Infineon microcontrollers6, and
more. We briefly describe the relevant instructions in Armv7-M [ARM21b] and their timing
on Cortex-M3 [ARM10a]. add adds up two 32-bit values and sub subtracts them. adc and
sbc add and subtract the values with carry. lsl and lsr logically shift a 32-bit value left
and right by the specified constant/register value. asr performs an arithmetic right-shift.
ubfx extracts certain consecutive bits and unsigned-extends the result to a 32-bit value.
sbfx signed-extends the result to a 32-bit value. Each of the above instructions takes
one cycle (we exclude the instruction timing involving PC operands). mul multiplies two
32-bit values, mla accumulates the product to the accumulator, and mls subtracts the
product from the accumulator. mul takes one cycle and mla/mls takes two cycles. {u,
s}mull computes the 64-bit unsigned/signed product of two 32-bit values, and {u, s}mlal
accumulates the product to an accumulator. {u, s}{mul, mla}l takes 3 to 7 cycles and
is input-dependent [ARM10a, Table 18-1]. On Cortex-M4, a close relative of Cortex-M3,
all the arithmetic instructions take one cycle. See Table 2 for the instruction timings of

5https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/
general-purpose-mcus:GENERAL-PURPOSE-MCUS.

6https://www.infineon.com/cms/en/product/microcontroller/.

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://www.infineon.com/cms/en/product/microcontroller/
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Algorithm 5 Dilithium signature generation.
Input: sk = (r, K, tr, s1, s2, t0), M ∈ {0, 1}∗

Output: Signature σ = (z, h, c̃)
1: Â ∈ Rk×ℓ

q := ExpandA(r); µ ∈ {0, 1}512 ← H(tr||M); r′ ∈ {0, 1}512 ← H(K||µ); κ← 0
2: ŝ1 ← NTT(s1); ŝ2 ← NTT(s2); t̂0 ← NTT(t0)
3: (z, h)← ⊥
4: while (z, h) = ⊥ do
5: y ∈ Sℓ

γ1−1 ← ExpandMask(r′, κ)
6: ŷ ← NTT(y); w ← NTT−1

(
Âŷ

)
7: w1 ← HighBits(w); c̃ ∈ {0, 1}256 ← H(µ||w1); c← HB(c̃)
8: ĉ← NTT(c); z ← y + NTT−1 (ĉŝ1); r ← NTT−1 (ĉŝ2)
9: r0 ← LowBits(w − r)

10: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then
11: (z, h) = ⊥
12: else
13: h← NTT−1 (

ĉt̂0
)

14: h← MakeHint (−h, w − r + h))
15: if ∥ct0∥∞ ≥ γ2 or # 1’s in h > ω then
16: (z, h) = ⊥
17: end if
18: end if
19: κ← κ + 1
20: end while

the relevant arithmetic instructions on Cortex-M3 and Cortex-M4.

Constant-time concerns of Cortex-M3 long multiplications. The variable run-
time of the long multiplications (smull, smlal, umull, umlal) on Cortex-M3 is a critical
issue for computing on secret data. In the literature, [GOPT10] showed that variable-
time multiplication instructions led to straightforward timing side-channel attacks. A
workaround is to emulate the long multiplications with multi-limb arithmetic [GKS21],
resulting in a significant performance penalty.

Table 2: Summary of instruction timings on Cortex-M3 and Cortex-M4 where inputs are
32-bit registers.

Instruction Cycle
Cortex-M3 Cortex-M4

add/adc/sub/sbc/lsl/lsr/asr/ubfx/sbfx/mul 1 1
mla/mls 2 1
smull/smlal/umull/umlal 3−7 1

3 Algorithm Designs

3.1 Modular Multiplications
We first go through our implementations of modular multiplications. Convention-wise, we
call a multiplication modular multiplication if it computes a number equivalent to the
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product modulo an odd number with the same arithmetic precision. Otherwise, we call it
a plain multiplication.

3.1.1 Integer Approximation: Revisited

We generalize the notion of integer approximations. For a function JK : R→ Z, we call it
an integer approximation if ∃δ ∈ R>0,∀r ∈ R, |r − JrK| ≤ δ. When δ is known, we call JK
a δ-integer-approximation. The generalizations of modJK and

∣∣modJKq
∣∣ are defined in the

same way.

3.1.2 Generalizing Barrett Multiplication

Let a ∈
[
− R

2 , R
2
)

, b ∈
[
− q

2 , q
2
)

be integers. Recall that Barrett multiplication computes a

representative of ab mod q as ab−
s

aJ bR
q K0
R

{

1
q for integer approximations JK0 , JK1. If we

choose JK0 = JK1 = ⌊⌉, we have the standard Barrett multiplication. If we choose JK0 = ⌊⌉
and JK1 = ⌊⌋, we compute a representative of ab mod ±q with absolute value bounded by
1.75q since the images of ⌊⌉ and ⌊⌋ differ by at most 1, implying an increase in absolute
value of at most q. We call the choice (JK0 , JK1) = (⌊⌉ , ⌊⌋) the floor variant of Barrett
multiplication. We show that careful choices of JK1 are of practical importance. We choose
JK0 = ⌊⌉ and JK1 = JKb the following integer approximation:

∀r ∈ R, JrKb :=
⌊

albh√
R

⌋
+

⌊
ahbl√

R

⌋
+ ahbh

where al + ah

√
R = rR

J bR
q K0

, bl + bh

√
R =

r
bR
q

z

0
and al, bl ∈ [0,

√
R) and call the resulting

Barrett multiplication the approximate variant. We first prove |⌊r⌉ − JrKb| ≤ 3 as follows.

Proof.

|⌊r⌉ − JrKb|

=

∣∣∣∣∣
⌊(

ahbh + 1
2
)

R + (albh + ahbl)
√

R + albl

R

⌋
−

(
ahbh +

⌊
albh√

R

⌋
+

⌊
ahbl√

R

⌋)∣∣∣∣∣
=

∣∣∣∣⌊1
2 +

(
albh√

R
−

⌊
albh√

R

⌋)
+

(
ahbl√

R
−

⌊
ahbl√

R

⌋)
+ albl

R

⌋∣∣∣∣
≤

∣∣∣∣∣
⌊

1
2 +
√

R− 1√
R

+
√

R− 1√
R

+
(√

R− 1
)2

R

⌋∣∣∣∣∣
=

∣∣∣∣⌊1
2 + 3R− 4

√
R + 1

R

⌋∣∣∣∣
= 3.

Since |⌊r⌉ − JrKb| ≤ 3, we have∣∣∣∣∣∣ab−

u

v
a

r
bR
q

z

0
R

}

~

b

q

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ab−

a
r

bR
q

z

0
R

 q

∣∣∣∣∣∣ + 3q ≤ q

2

(
7 + |a|

R

)
.

Therefore, computing with ab −
s

aJ bR
q K0
R

{

b

q is tolerable as long as q
2

(
7 + |a|

R

)
< R

2 . In

Dilithium, this is the case since q < 223 and R = 232. The benefit is that JK1 is faster than
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⌊⌉ if we have to emulate them with log2 R
2 = log2 R

2 × log2 R
2 low multiplication instructions7.

Furthermore, we can also choose JK1 =b JK as follows:

∀r ∈ R,bJrK :=
⌊

albh +
√

R
2√

R

⌋
+

⌊
ahbl√

R

⌋
+ ahbh

and find |⌊r⌉ −bJrK| ≤ 2. We call the resulting Barrett multiplication the half-approximate
variant. See Table 3 for an overview of the variants of Barrett multiplication.

Table 3: Overview of the variants of Barrett multiplications. Upper bounds stand for the
upper bounds of the absolute values of the results.

Name JK0 JK1 Upper bound Upper bound when |a| ≤ R
2

Standard ⌊⌉ ⌊⌉ q
2

(
1 + |a|

R

)
0.75q

Floor ⌊⌉ ⌊⌋ q
2

(
3 + |a|

R

)
1.75q

Half-approximate ⌊⌉ bJK q
2

(
5 + |a|

R

)
2.75q

Approximate ⌊⌉ JKb
q
2

(
7 + |a|

R

)
3.75q

3.2 Transformations
We go through the transformations in this section. Section 3.2.1 goes through the
multiplication-based NTT/iNTT and Section 3.2.2 goes through the fast homomorphism
modulo Z2k .

3.2.1 Multiplication-Based NTT/iNTT

This paper presents two classes of multiplication-based NTT/iNTT. The first is the NTT
and iNTT mandated by Dilithium, which we call Dilithium NTT and iNTT. The second
one is the 16-bit NTT/iNTT for the multiplication by the challenge polynomial in the
signature generation of Dilithium.

Dilithium NTT/iNTT. For the Dilithium NTT/iNTT, since one is asked to compute
a certain transformation, there are not many implementation choices. The main focus is
on choosing an efficient modular multiplication. We choose Barrett multiplication for the
Dilithium NTT/iNTT throughout this paper. Two variants come to our mind – the floor
variant avoiding the addition of R

2 and the approximate variant avoiding the computation
of the low parts in the high multiplication.

Correctness of the Barrett-based NTT/iNTT. We argue that our Barrett-based
NTT/iNTT is correct as there are no overflows throughout the computation. Our argument
follows the traditional range analysis. Suppose the result of a modular multiplication has
an absolute value bounded by θq for a positive real number θ. In Dilithium NTT, since
each layer of butterflies increases the absolute values of the coefficients by at most θq and
there are eight layers of butterflies, the resulting values have absolute values bounded by
(8θ + 1) q. As long as (8θ + 1) q < R

2 , there are no overflows. This implies that any choices
of θ ≤ 31.90 <

R
2q −1

8 are sufficient for q = 223 − 213 + 1 and R = 232. We have θ ≤ 0.75
7In the reference manual of Armv7-M [ARM21b], multiplication instructions are sometimes denoted as

w0 = w1 x w2 multiplication instructions for several combinations of bit sizes w0 for the output, w1 for the
first input, and w2 for the second input. We follow the same convention.
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for the standard one, θ ≤ 1.75 for the floor variant, θ ≤ 2.75 for the half-approximate
variant, and θ ≤ 3.75 for the approximate variant based on Table 3. Table 4 summarizes
the upper bounds of the modulus q for various choices of θ’s. Recently, there have been
continuous efforts to formally verify the implementation correctness of critical subroutines,
including [HLS+22] with CryptoLine and [ABB+23] with EasyCrypt. In principle, the
ideas of [HLS+22] and [ABB+23] work, but we believe formal verification is out of the
scope of this work.

Table 4: Relations between the quality θ of a modular multiplication and the modulus q
for a 7-layer radix-2 Cooley–Tukey FFT. The approaches of modular multiplication are
sorted in the increasing order of the computational efficiency on Cortex-M3.

θ Upper bound of q Upper bound of log2 q

Standard 0.75 306 783 378 28.1926
Floor 1.75 143 165 576 27.0931
Half-approx. 2.75 93 368 854 26.4763
Approximate 3.75 69 273 666 26.0458

Experimental analysis. Instead of formal verification, we provide some experimental
analyses for the range of the intermediate coefficients throughout the computation of
Dilithium NTT with the approximate variant of Barrett multiplication. Table 5 illustrates
the upper bounds of the absolute values of the intermediate coefficients layer by layer.

Table 5: Upper bounds of the absolute values of intermediate coefficients throughout an
NTT computation with random inputs.

Input Output Output (log2-scale)
Layer 0 8 363 648 27 234 418 24.70
Layer 1 27 234 418 41 063 339 25.30
Layer 2 41 063 339 49 941 104 25.58
Layer 3 49 941 104 61 183 326 25.87
Layer 4 61 183 326 73 057 383 26.13
Layer 5 73 057 383 75 903 955 26.18
Layer 6 75 903 955 88 663 707 26.41
Layer 7 88 663 707 93 546 600 26.48

Polynomial multiplications with 16-bit arithmetic. Recall that in Dilithium, c is a
polynomial with τ ±1’s and 256− τ 0’s, and s1 and s2 are vectors of polynomials with
coefficients in {−η, . . . , 0, . . . , η}, the vectors of products cs1 and cs2 can be computed
over a sufficiently large modulus bounding the maximum possible coefficient in the re-
sults [AHKS22]. [AHKS22] applied the idea to Dilithium on Cortex-M4, and showed that
Fermat number transform with the coefficient ring Z257 is the fastest approach for the
security levels II and V. For the security level III, since η is too large, they chose Z769 as the
coefficient ring and resorted to standard 16-bit NTT. In prior Cortex-M3 work [HAZ+24]
exploiting the same idea of small NTT, they argued the benefit of code sharing between
multiple parameter sets, while the whole point of their paper is about optimization for
speed. We implement FNT on Cortex-M3 with butterflies from [BHK+22a] and a refined



Vincent Hwang, YoungBeom Kim and Seog Chung Seo 13

variant of [HZZ+24,HAZ+24]’s Plantard reduction based on [AMOT22] and outperform
their small NTT implementation for security levels II and V in speed as we will see in
Section 5.2.

3.2.2 The Fast Homomorphism Modulo Powers of Two

This section describes our polynomial multiplier for Z2k [x]
/〈

x256 + 1
〉

with k = 0, 1, . . . , 24
operating over 32-bit registers. In the signature of Dilithium, we also need to multiply
the challenge polynomial c by t0 whose elements reside in

{
−212, . . . , 0, . . . , 212 − 1

}
.

Following the previous paragraph, one can compute the product ct0 modulo a q with
q ≥ 491520 ≥ 2 · τ · 212. We compute with the modulus q = 219 > 491520.

Nussbaumer FFT in theory. Notice that Z2k [x]
/〈

x256 + 1
〉

admits substructures
isomorphic to Z2k [y]

/〈
y28−h + 1

〉
via x2h ∼ y for some h’s. We introduce the equivalence

x16 ∼ y (so y16 ∼ −1) and replace it with x32 ∼ 1. If we regard the 2-indeterminate
polynomial ring as a polynomial ring in x, we find that y is a principal 32-nd root of unity
since y16 = −1 (cf. Section 2.3). Therefore, x32 − 1 splits into

∏
i

(
x− yi

)
. We then apply

size-32 cyclic Cooley–Tukey FFT in x with y as the principal 32-nd root of unity.

Nussbaumer FFT in practice. In practice, replacing x16 ∼ y by x32 ∼ 1 amounts to
zero padding that is merged with the FFT computation. As for the FFT-based polynomial
multiplication, we have to multiply the inverse of the transformation size 32 at the end.
Since 32 is not invertible in Z2k , we replace the coefficient ring Z2k by Z2k+5 for adjoining
divisions by 328. The resulting polynomial ring is permuted due to Cooley–Tukey FFT.
We summarize the transformations so far as follows:

Z2k [x]
⟨x256 + 1⟩

∼=

(
Z2k [y]

⟨y16+1⟩

)
[x]

⟨x16 − y⟩
↪→

(
Z2k+5 [y]
⟨y16+1⟩

)
[x]

⟨x32 − 1⟩
∼=

∏
i0,...,i4=0,1

(
Z2k+5 [y]
⟨y16+1⟩

)
[x]〈

x− y

∑
j

ij2j

〉 .

Analyzing the number of multiplications. For simplicity, we assume n ≥ 2 is a
power of two with exponent a power of two. In the literature, a size-n Nussbaumer FFT
for R[x]/⟨xn + 1⟩ requires Θ (n lg n max (lg lg n, 1)) additions/subtractions and results in
n
2 lg n size-2 polynomials. If we multiply two size-n polynomials with Nussbaumer FFT,
we need Θ (n lg n max (lg lg n, 1)) operations in the coefficient ring. In practice, we need to
revise the analysis of the number of multiplications for a concrete analysis. Let’s say we
recurse until the problem size is smaller than or equal to a platform-dependent power-of-two
constant t ≥ 2 with exponent a power of two and switch to asymptotically slower approaches,
such as the schoolbook, Karatsuba, and Toom–Cook, with tα operations where 1 < α < 2
is a constant. The switches to asymptotically slower approaches are typically employed
in practice [ACC+21, CHK+21, NG21, ACC+22, BBCT22, AHY22, BHK+22b, BMK+22,
Hwa24a]. We revise the number of multiplications in Cooley–Tukey and Nussbaumer FFTs
for polynomial multiplications as follows:

• Cooley–Tukey FFT: For the transformation, we need n lg n
2 lg t multiplications for each,

and there are three transformations, resulting in 3n lg n
2 lg t multiplications. Furthermore,

we also have n
t size-t polynomial multiplications with each requiring tα multiplications.

In total, we need 3n lg n
2 lg t + ntα−1 multiplications with Cooley–Tukey FFT.

8By correctness, the last division by 32 is applied to the 32-multiple of the desired result. Replacing
Z2k by Z2k+5 suffices for computing the 32-multiple. This can be justified by the localization of Z-
algebra [Jac12, Section 7] at non-zero elements.
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• Nussbaumer FFT: We don’t need multiplications for the transformation, and we
have n lg n

t lg t size-t polynomial multiplications with each requiring tα multiplications.
Therefore, we need ntα−1 lg n

lg t multiplications with Nussbaumer FFT.

We compare the factors of the dominating term n lg n: we have 3
2 lg t in Cooley–Tukey

and tα−1

lg t in Nussbaumer. See Table 6 for a summary. Since t is typically between 4 to 16
by experiments [CHK+21,BBCT22]9, Nussbaumer amounts to a much larger number of
multiplications. We will later see the numerical justification of our revision in Section 5.2.

Table 6: Overview of the arithmetic cost of Cooley–Tukey and Nussbaumer FFTs for
multiplying two size-n polynomials with the threshold t. Transformation cost refers to the
number of corresponding arithmetic for transforming the large-dimensional polynomial
multiplication into several small-dimensional polynomial multiplications. There are three
rows in the transformation cost: (i) the number of additions/subtractions, (ii) the number of
multiplications, and (iii) the number of small-dimensional polynomial multiplications after
the transformation. Polynomial multiplication cost refers to the number of corresponding
arithmetic implementing the large-dimensional polynomial multiplication. We only present
the number of multiplications and the dominating term for the polynomial multiplication
cost.

Cooley-Tukey Nussbaumer
Transformation cost

# of add./sub. 1
2 lg t · n lg n 0

# of mul. 1
lg t · n lg n Θ (n lg n max (lg logt n, 1))

# of small dim. polymul. n
t

1
t lg t · n lg n

Polynomial multiplication cost
# of mul. 3n lg n

2 lg t + ntα−1 ntα−1 lg n
lg t

Dominating term 3n lg n
2 lg t

ntα−1 lg n
lg t

The remaining computing task are 32 polynomial multiplications in Z2k+5 [y]
/〈

y16 + 1
〉

.
We implement it with a Toeplitz matrix-vector product built upon Toom-4.

Toeplitz matrix-vector product from Toom-4 in theory. For simplicity, we describe
the Toom-4 [Too63] corresponding to the 4-way split of TMVP used in this work. Suppose
we want to multiply two size-4 polynomials

∑3
i=0 aix

i and
∑3

i=0 bix
i in R[x]. We apply

Toom-4 with the point set
{

0,±1,±2, 1
2 ,∞

}
. This amounts to applying the following

9One should not confuse the determination of t in polynomial multiplication with the designs of
Dilithium and Kyber NTT/iNTT. Kyber [ABD+20b] is a key encapsulation mechanism selected by the
NIST Post-Quantum Cryptography Standardization. In Dilithium and Kyber NTTs/iNTTs, the designers
chose t = 1, 2 and mandated one of the operands to be sampled from the transformed domain. Therefore,
they are multiplying polynomials in a transformed domain instead of a large-dimensional polynomial ring
as in Nussbaumer.
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matrix to all the operands with the standard basis10:

1 0 0 0
1 1 1 1
1 −1 1 −1
1 2 4 8
1 −2 4 −8
8 4 2 1
0 0 0 1


.

After 7 multiplications in R, we apply the following inversion map to the 7-tuple:

1 0 0 0 0 0 0
1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1
1 2 4 8 16 32 64
1 −2 4 −8 16 −32 64
64 32 16 8 4 2 1
0 0 0 0 0 0 1



−1

.

This gives us the desired product
(∑3

i=0 aix
i
) (∑3

i=0 bix
i
)

. The 4-way Toeplitz matrix-
vector product used in this work is obtained via a series of dualizations from the module-
theoretic point of view. See [CCHY24, Section 4.5] for a constructive correctness proof.

Toeplitz matrix-vector product from Toom-4 in practice. In practice, we need
to figure out how to adjoin divisions by powers of two while applying the transformation
matrix. Conceptually, we extract all divisions by powers of two, move them to the end
of the computation, and implement them with shifts. By the correctness of the Toeplitz
matrix-vector product, we will always shift out zeros at the end of the computation. One
can show that the requirement of divisions by powers of two is the same as in Toom-4.
Since Toom-4 with the point set

{
0,±1,±2, 1

2 ,∞
}

requires the divisions by 8, we replace
the coefficient ring Z2k+5 by Z2k+8 . This explains why our polynomial multiplier only works
for k = 0, 1, . . . , 24 while operating entirely on 32-bit registers.

4 Implementations
4.1 Barrett Multiplications
We implement two variants of Barrett multiplications: the first one is the constant-time
approximate variant of Barrett multiplication; the second one is the variable-time floor
variant of Barrett multiplication. See Table 7 for an overview of the total instruction
timings.

Constant-time Barrett multiplication. For the constant-time Barrett multiplication,

we compute ab−
s

a
⌊

232b
q

⌉
232

{

b

q as a representative of ab mod q where
⌊

232b
q

⌉
is precomputed.

We first compute
s

a
⌊

232b
q

⌉
232

{

b

with Algorithm 6 and then compute the difference of the

products ab and
s

a
⌊

232b
q

⌉
232

{

b

q. See Algorithm 7 for an illustration. Since our constant-time

10The standard basis representing size-n polynomials is
{

1, x, x2, . . . , xn−1
}

, and the standard basis for
a product of polynomial rings is their juxtaposition.
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Table 7: Overview of multiplication operations with 32-bit input values on Cortex-M3. The
cycles are obtained by summing up the instruction timings from the manual [ARM10a].

Plain multiplication
Multiplication operation Work Cycle
Long (variable-time) [ARM10a] 3−7
Long (constant-time, non-generic) [GKS21] 11
Long (constant-time) [GKS21] 12

Modular multiplication (Constant-Time)
Montgomery multiplication [GKS21] 23
Barrett multiplication (approximate) This work 12 (1.92)

Modular multiplication (Variable-Time)
Montgomery multiplication [GKS21] 9−16
Barrett multiplication (floor) This work 6−8 (1.13−2.67)

Barrett multiplication performs comparably to the constant-time long multiplication, it
outperforms any modular multiplication calling a constant-time long multiplication followed
by a reduction subroutine with non-negligible cost on Cortex-M3. This explains why our
constant-time Barrett multiplication performs 1.92 times faster than the constant-time
Montgomery multiplication by [GKS21] with the same input constraints (we assume the
inputs are 32-bit numbers since such comparisons are more orthogonal for 32-bit arithmetic
whereas [GKS21] assumed the inputs are 16-bit numbers while replacing the memory load
operations for words with doubly many load operations for halfwards).

Algorithm 6 Implementation of mulhi_split on Cortex-M3.
Inputs: alo = al, ahi = ah, blo = bl, bhi = bh.
Outputs: acchi = ahbh +

⌊
albh

216

⌋
+

⌊
ahbl

216

⌋
.

1: mul acchi, ahi, bhi ▷ acchi = ahbh.
2: mul accmid, alo, bhi ▷ accmid = albh.
3: add acchi, acchi, accmid, asr #16 ▷ acchi = ahbh +

⌊
albh

216

⌋
.

4: mul accmid, ahi, blo ▷ accmid = ahbl.
5: add acchi, acchi, accmid, asr #16 ▷ acchi = ahbh +

⌊
albh

216

⌋
+

⌊
ahbl

216

⌋
.

Variable-time Barrett multiplication. For the variable-time Barrett multiplication,

we compute ab−
⌊

a
⌊

232b
q

⌉
232

⌋
q as shown in Algorithm 8. Compared to the assembly-optimized

variable-time Montgomery multiplication as shown in Algorithm 9, Barrett multiplication
turns the smlal into an mls. Since smlal takes 5 to 8 cycles and mls takes only two cycles,
Barrett multiplication is obviously faster. Overall, our variable-time Barrett multiplication
is 1.13−2.67 times faster than the variable-time Montgomery multiplication by [GKS21].

4.2 Dilithium NTT/iNTT

We apply our generalized Barrett multiplication to Dilithium NTT/iNTT. Such NTT/iNTT
are required in the matrix-vector multiplication and are not covered by [HAZ+24]. To
be specific, Lines 5 and 6 in Algorithm 3, Lines 2 and 5 in Algorithm 4, and Line 6 in
Algorithm 5.
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Algorithm 7 Constant-time Barrett multiplication with 32-bit inputs on Cortex-M3.

Inputs: a = a, b = b, bp =
⌊

232b
q

⌉
.

Outputs: c = ab−
s

a
⌊

232b
q

⌉
232

{

b

q.

1: mul c, a, b ▷ c = ab mod ±232.
2: ubfx t0, a, #0, #16
3: asr a, a, #16 ▷ t0 + a · 216 = a.
4: ubfx blo, bp, #0, #16
5: asr bhi, bp, #16 ▷ blo + bhi · 216 =

⌊
232b

q

⌉
.

▷ This splitting can be merged with memory operations.

6: mulhi_split t1, a, bhi, t0, blo, t2 ▷ t1 =
s

a
⌊

232b
q

⌉
232

{

b

.

7: mls c, t1, q, c ▷ c = ab−
s

a
⌊

232b
q

⌉
232

{

b

q.

Algorithm 8 Variable-time Barrett multiplication on Cortex-M3.

Inputs: a = a, b = b, bhi =
⌊

232b
q

⌉
.

Outputs: c = ab−
⌊

a
⌊

232b
q

⌉
232

⌋
q.

1: smull lo, hi, a, bhi ▷ lo + hi · 232 = a
⌊

232b
q

⌉
.

2: mul c, a, b ▷ c = ab mod ±232.

3: mls c, hi, q, c ▷ c = ab−
⌊

a
⌊

232b
q

⌉
232

⌋
q.

Choices of Barrett multiplications for constant/variable-time NTT/iNTT. For
the matrix-vector multiplications of Dilithium, one should apply constant-time compu-
tation to the ones in key generation and signature generation. As for the matrix-vector
multiplication in the signature verification, one can compute it with the fastest approach
without any side-channel worrisome since verification is public under the context of digital
signature. On Cortex-M3, we compute the matrix-vector multiplications in key generation
and signature generation with constant-time NTT/iNTT based on the approximate variant
of Barrett multiplication and the one in the signature verification with the fastest approach
– variable-time NTT/iNTT based on the floor variant of Barrett multiplication. See Table 8
for a summary of the constant-time requirement and the chosen modular multiplications
in the NTTs/iNTTs of the matrix-vector multiplications.

Table 8: Constant-time requirements and modular multiplications in the NTTs/iNTTs
of matrix-vector multiplications of key generation, signature generation, and signature
verification.

Constant-timeness requir. Approach (Cortex-M3)
Key generation ✓ Constant-time approx. Barrett
Signature generation ✓ Constant-time approx. Barrett
Signature verification ✗ Variable-time floor Barrett
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Algorithm 9 Variable-time Montgomery multiplication on Cortex-M3 [GKS21,ACC+21].
[GKS21] and [ACC+21] independently proposed the same computation. [GKS21] applied
the idea to Cortex-M3 and Cortex-M4 and [ACC+21] applied the idea to Cortex-M4.
Inputs: a = a, b = b.
Outputs: hi = ab+(−abq−1 mod ±232)q

232 .
1: smull lo, hi, a, b ▷ lo + hi · 232 = ab.
2: mul lo, lo, −q−1 mod ±232 ▷ lo = −abq−1 mod ±232.
3: smlal lo, hi, lo, q ▷ hi = ab+(−abq−1 mod ±232)q

232 .

Analyzing the register pressure of layer-merging. Layer-merging is a common
memory optimization strategy for software implementations. Conceptually, we load a
series of coefficients defining multiple layers of isomorphisms, compute the isomorphisms,
and store the results in memory. For the radix-2 NTT/iNTT, the goal is to compute l
layers of radix-2 butterflies. We formally analyze the register pressure enabling an l-layer
merging for the constant-time and variable-time NTT/iNTT. For an l-layer merge in an
NTT/iNTT, we must load 2l coefficients and 2l − 1 twiddle factors. For the variable-time
radix-2 NTT/iNTT, since we need 2l registers for the coefficients and 2l − 1 registers for
the twiddle factors, we can merge up to two layers. On the other hand, we need 2l registers
for the coefficients and 3

(
2l − 1

)
registers for the twiddle factors in our constant-time

radix-2 NTT. Therefore, there is no layer-merging in our constant-time radix-2 NTT. As
for the iNTT, we apply a similar layer-merging technique from [ACC+22] by observing
that some twiddle factors are 1’s.

4.3 Fast Homomorphism Modulo Powers of Two
For our fast homomorphism for Z2k [x]

/〈
x256 + 1

〉
, we briefly outline the implementation

challenges for the Nussbaumer implementing Z2k [x]
/〈

x256 + 1
〉

↪→ R′[x]
/〈

x32 − 1
〉 ∼=

(R′)32 where R′ = Z2k+5 [y]
/〈

y16 + 1
〉

. As for the TMVP for R′, we find it straightforward
for implementation, so we skip the description.

Layer merging in Nussbaumer. Recall that in Nussbaumer, twiddle factor multipli-
cations are negacyclic shifts, and when we move to the next layer, there are doubly many
negacyclic shifts where two registers are involved in each butterfly. This implies a factor of
4 blow-up, and we need 22l−1 registers for an l-layer merge. Therefore, we can only merge
at most two layers on Cortex-M3.

Optimizing the layer merging during pre- and post-processing in Nussbaumer.
We further implement the following optimizations to reduce the memory access during the
replacement of x16 ∼ y by x32 ∼ 1. We skip the explicit replacement of relations and the
initial butterflies, and modify the memory load in the follow-up butterflies accordingly.
For the converse replacement (replacing x32 ∼ 1 by x16 ∼ y), we also merge it with the
last series of butterflies.

Memory consumption. Finally, we outline the memory consumption of the fast
homomorphism modulo powers of two. In the beginning, we map each polynomial in
Z2k [x]

/〈
x256 + 1

〉
to 32 polynomials in Z2k+5 [y]

/〈
y16 + 1

〉
with Nussbaumer. For each

polynomial in Z2k+5 [y]
/〈

y16 + 1
〉

, we map it to seven 4× 4 Toeplitz matrices over Z2k+8

for one of the operands and seven size-4 vectors over Z2k+8 for the other operand. For
each Toeplitz matrix, we only need to store the first row and the first column, but we
allocate 8 words for smooth engineering [IKPC20]. We need 4 · 8 · 7 · 32 = 7168 bytes for



Vincent Hwang, YoungBeom Kim and Seog Chung Seo 19

Nussbaumer for Z2k [x]
/〈

x256 + 1
〉

· · · · · · · · ·(
Z2k+5 [y]

/〈
y16 + 1

〉)32

TMVP for Z2k+5 [y]
/〈

y16 + 1
〉

· · · · · · · · ·

(M4×4 (Z2k+8))7

Figure 2: Overview of our fast homomorphism modulo powers of two. There are two phases:
(i) Nussbaumer for Z2k [x]

/〈
x256 + 1

〉
and (ii) TMVP for Z2k+5 [y]

/〈
y16 + 1

〉
. Nussbaumer

maps Z2k [x]
/〈

x256 + 1
〉

to
(
Z2k+5 [y]

/〈
y16 + 1

〉)32. As for TMVP for Z2k+5 [y]
/〈

y16 + 1
〉

,
we illustrate the matrix part – each polynomial in Z2k+5 [y]

/〈
y16 + 1

〉
is expanded into

seven 4×4 Toeplitz matrices. For a Toeplitz matrix, we only store the first row and column
explicitly [IKPC20].

the Toeplitz part and 4 · 4 · 7 · 32 = 3584 bytes for the vector part. See Figure 2 for an
illustration for the Toeplitz part. In addition, we also need two buffers of 512 words each
for the Nussbaumer while saving memory operations with out-of-place computation. In
total, we need 7168 + 3584 + 4 · 512 · 2 = 14848 bytes of memory where the buffers for
Nussbaumer are shared while multiplying two polynomials with our fast homomorphism
modulo powers of two.

5 Results

5.1 Benchmarking Environment
We benchmark our Armv7-M implementations on a nucleo-f207zg board containing a
stm32f207zg core with 128 KiB of SRAM and 1 MB of flash memory. According to [STM20,
Sections 3.2 and 3.6], stm32f207zg provides access to SRAM and flash memory with 0
wait state up to the frequency 120 MHz. Nevertheless, we follow the literature [ACC+22]
and benchmark at a frequency 30 MHz for consistency. We compile our code with the
cross-compiler arm-none-eabi-gcc version 10.3.1. For fair comparisons, we plug in the
improved Keccak permutation by [HAZ+24] and re-bench the implementations from the
literature with this new Keccak permutation.

5.2 Performance of Polynomial Multiplications
5.2.1 Dilithium NTT/iNTT

For the Dilithium NTT/iNTT, our constant-time Barrett-based NTT and iNTT are 1.51×
and 1.38× faster than prior art with constant-time Montgomery multiplications, and our
variable-time Barrett-based NTT and iNTT are 1.21× and 1.10× faster than prior art
with variable-time Montgomery multiplications. See Table 9 for a summary.
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Table 9: Performance numbers of Dilithium NTT/iNTT on Cortex-M3.

Constant-time Variable-time
[GKS21] This work [GKS21] This work

NTT 33 025 21 876 (1.51) 19 347 15 985 (1.21)
iNTT 36 609 26 524 (1.38) 21 006 19 067 (1.10)

5.2.2 Polynomial Multiplications with 16-bit Arithmetic Precision

For the 16-bit arithmetic, our NTT, base multiplication, and iNTT are 1.08×, 1.41×,
1.11× faster than prior art by [HAZ+24] with no surprises. See Table 10 for a summary.

Table 10: Performance cycles of polynomial multiplications with 16-bit arithmetic precision
on Cortex-M3. The numbers of [ACC+22] in this table were reported in one of the authors’
master thesis [Hwa22, Table 9.10]

Work [ACC+22] [HAZ+24] This work
Coefficient ring Z3329 Z769 Z257
Approach Montgomery Plantard FNT
NTT 8 688 (0.90) 7 830 7 252 (1.08)
Mul. 5 987 (0.67) 3 989 2 835 (1.41)
iNTT 9 553 (0.89) 8 543 7 667 (1.11)

5.2.3 Polynomial Multiplications with 32-bit Arithmetic Precision

For polynomial multiplications with 32-bit arithmetic precision, our polynomial multiplier
built upon Nussbaumer FFT and TMVP from Toom-4 is more performant than existing
works. We have roughly 1.9 times faster module homomorphism for one of the operands
and the interpolation at the expense of slightly slower module homomorphism for the other
operand and a slower bilinear map compared to [HAZ+24]. See Table 11 for a summary.
We demonstrate the impact of the choices of coefficient rings with numerical evidence from
the literature [BBCT22,Hwa24a,HAZ+24] and this work as follows.

Nussbaumer modulo Zq for an odd q. Section 3.2.2 explains that Nussbaumer
intrinsically requires much more multiplications not reflected in the asymptotic analysis
of the runtime than Cooley–Tukey. We compare the Schönhage11+Nussbaumer approach
by [BBCT22] to the multiplication-based NTT approach by [Hwa24a] for multiplying
polynomials in Z4591[x]

/〈
x761 − x− 1

〉
of NTRU Prime [BBC+20]. Both approaches

are quite complicated, so we skip the descriptions and focus on the number of small-
dimensional polynomial multiplications after the transformations. Both approaches amount
to size-8 polynomial multiplications over Z4591 and are implemented with AVX2 on
Haswell processors with the modular multiplication by [Sei18]. The Schönhage+Nussbaumer
by [BBCT22] results in 768 size-8 polynomial multiplications, and the multiplication-based
NTT by [Hwa24a] results in 192 size-8 polynomial multiplications. Since each modular
multiplication in Z4591 amounts to 3 times the cycles compared to the plain multiplication
for the most critical pipeline on Haswell, we would expect a large performance penalty
while extending the polynomial rings with Nussbaumer and Schönhage. In fact, the cycles

11Schönhage [Sch77] is a similar approach crafting the roots of unity.
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Table 11: Performance cycles of polynomial multiplications with 32-bit arithmetic precision
on Cortex-M3. The total cycles of polynomial multiplications are obtained by summing up
all the rows in the building block, and other rows are obtained by benchmarking.

Work [ACC+22] [HAZ+24] This work
Coefficient ring

∏
i=0,1 Zqi

∏
i=0,1 Zqi

Z2≤24

Approach Montgomery Plantard Nussbaumer
Building block

NTT/Hom-M 16 774 (0.93) 15 626 15 820 (0.99)
NTT/Hom-V 16 774 (0.93) 15 626 8 259 (1.89)
Mul./BiHom 11 933 (0.68) 8 061 11 217 (0.72)
iNTT/Hom-I 23 721 (0.88) 20 772 10 960 (1.90)

Polynomial multiplication
Total cycles 69 202 (0.87) 60 085 46 256 (1.30)
Ratio of mul./BiHom over total cycles 17.24% 13.42% 24.25%
Memory (bytes) 1 536 2 048∗ 14 848

∗ In [HAZ+24, Section 4.2.3], the authors claimed to achieve an improvement of stack usage to one-third of
Algorithm 5 in [ACC+22]. Their statement is invalid. Firstly, Algorithm 5 of [ACC+22] computes the masked
product with 48-bit precision, and a scientifically valid way is to compare to Algorithm 4 of [ACC+22],
which computes the unmasked product with 32-bit precision, the computation what [HAZ+24, Section
4.2.3] refers to. Secondly, they claimed that 1024 bytes are used by the polynomial multiplication by
sharing the memory usage of one of the operands with something else and removing its memory attribution,
whereas [ACC+22] reported memory usage with all the operands included and also reused the memory for
something else in the implementation. We follow [ACC+22]’s comparison methodology.

of the small-dimensional polynomial multiplications in the Schönhage+Nussbaumer FFT
approach by [BBCT22] takes 55.24% of the polynomial multiplication cycles, whereas the
cycles of the small-dimensional polynomial multiplications in the multiplication-based NTT
approach by [Hwa24a] takes only 23.98% of the polynomial multiplication cycles, and the
majority of the improvement cycles of [Hwa24a] over [BBCT22] comes from the reduction
of small-dimensional polynomial multiplications. In summary, when multiplications in the
coefficient ring are slow, Nussbaumer FFT is not a good choice.

Nussbaumer modulo Z2k . Things become quite different when the coefficient ring
takes the form Z2k . For the Nussbaumer approach, the small-dimensional polynomial
multiplication takes only 24.25% of the overall polynomial multiplication. As for the
multiplication-based NTT approach, since the Z2k does not straightforwardly support an
NTT, one has to resort to the multi-moduli approach based on the residue number system
when there is no efficient 32-bit modular multiplication, such as Cortex-M3 [ACC+22,
HAZ+24] and AVX2 [CHK+21]. See Table 12 for a summary of the performance impact of
the choices of coefficient rings in Nussbaumer.

Notes on the engineering effort. For the engineering effort of the Nussbaumer and
Toeplitz-TC over Z2k , we developed the assembly programs with the aid of the artifact
in C associated to [Hwa24b]. According to our development log, only six days were spent
from parameter selection to hand-written assembly-optimized implementation without any
scripting support. We later developed the C programs for the transformations to facilitate
future development. Please find the C programs in the artifact.
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Table 12: Summary of the performance impact of the choices of coefficient rings in
Nussbaumer and similar approaches versus other approaches. We extracted the small-
dimensional polynomial multiplications in the AVX2 programs by [BBCT22, Hwa24a]
and benchmarked with the same setting of [Hwa24a] on the same Haswell processor after
contacting the author of [Hwa24a].

Mul./BiHom Total Mul./BiHom over Total
Polymul. in Z4591

/〈
x761 − x− 1

〉
of NTRU Prime with AVX2 on Haswell

Schönhage/Nussbaumer, 12 960 23 460 55.24%[BBCT22]
Mul.-based, [Hwa24a] 2 958 12 336 23.98%

Polymul. of one of the components of ct0 for Dilithium on Cortex-M3
Mul.-based, 8 061 60 085 13.42%[HAZ+24] (Z3329 × Z7681)
Nussbaumer (Z219), this work 11 217 46 256 24.25%

5.3 Performance of Core Polynomial Arithmetic

Matrix-vector multiplications. In Dilithium, the most time-consuming polynomial
arithmetic is the matrix-vector multiplications in key generation, signature generation, and
signature verification. In the key generation and signature generation, we use constant-time
arithmetic; in the signature verification, we use variable-time arithmetic as mentioned in
Section 4.2 and Table 8. We plug in our Barrett-based constant/variable-time NTT/iNTT
accordingly. We additionally follow a similar idea of accumulating several products prior
to applying modular reductions in the literature [CHK+21, Section 3.1]. Compared to the
state-of-the-art [GKS21], our variable-time matrix-vector multiplications are 1.36−1.41
times faster, and our constant-time matrix-vector multiplications are 1.71−1.77 times
faster (cf. Table 13).

Table 13: Performance cycles of the matrix-vector multiplications for Dilithium on Cortex-
M3. The performance numbers of prior work [GKS21] are projections of the lower bounds
based on [GKS21, Table 2].

Security Variable-time Constant-time
level [GKS21] This work [GKS21] This work
II 240k 176k (1.36) 414k 242k (1.71)
III 370k 267k (1.39) 639k 371k (1.72)
V 578k 411k (1.41) 999k 566k (1.77)

Multiplications with the challenge polynomial. The second most time-consuming
polynomial arithmetic is cs1, cs2, and ct0 in the rejection loop of signature generation.
We apply our FNT to cs1 and cs2 in Dilithium II and V, and our implementations are
1.20× faster than [HAZ+24]. We also apply our Nussbaumer with Toeplitz-TC to ct0 in
Dilithium II. In theory, the idea also works for Dilithium III and V, but we can’t apply
them due to memory usage. Our ct0 in Dilithium II is 1.31× faster than [HAZ+24]. See
Table 14 for a summary.



Vincent Hwang, YoungBeom Kim and Seog Chung Seo 23

Table 14: Performance cycles of cs1, cs2, ct0 in the rejection loop of signature generation in
Dilithium on Cortex-M3 where the transformation cost of c is excluded since it is shared
among several computations. The numbers of [HAZ+24] are projections based on Tables 10
and 11 since their benchmark setup is flawed ( [HAZ+24] counted the transformation cost
of c twice while reporting numbers of cs1 and cs2, but this should be counted only once
even if the cost of c is counted). The memory usage of the full signature generation is
also included where S stands for the signature generation of Dilithium. In dilithium2,
the memory overhead comes from (i) accumulating long products in the matrix-vector
multiplication, (ii) applying FNT with elements stored as 32-bit elements to cs1 and cs2,
and (iii) Nussbaumer to ct0. In dilithium5, the memory overhead comes from (ii) and
(iii).

dilithium2 dilithium5
[HAZ+24] This work [HAZ+24] This work

cs1 50 128 41 672 (1.20) 87 724 72 891 (1.20)
cs2 50 128 41 672 (1.20) 100 256 83 296 (1.20)
ct0 115 332 87 969 (1.31) 230 664 -
S memory (bytes) 44 972 76 876 57 740 67 436

5.4 Performance of Dilithium
We compare the performance of Dilithium on Cortex-M3 by [HAZ+24]. Before going
through the numbers, we would like to point out misuses of variable-time Dilithium NTT
in the signature generation of dilithium5 by [HAZ+24] – they applied the variable-time
Dilithium NTT by [GKS21] to the vector operand ŷ = NTT(y) of the matrix-vector
multiplication Âŷ in Line 6 of Algorithm 5. We believe this is an oversight since they only
applied the variable-time Dilithium NTT to the signature generation of dilithium5, and
it doesn’t occur in the signature generations of dilithium2 and dilithium3. We replace
the variable-time Dilithium NTT by [GKS21] in the signature generation of [HAZ+24]’s
work with the constant-time Dilithium NTT by [GKS21] and benchmark their work in
this paper.

For the key generation, we reduce the cycles by 12.70%, 9.34%, and 9.65% for the
security levels II, III, and V, respectively. For the signature generation, we reduce the
cycles by 18.42%, 12.34%, and 8.34% for the security levels II, III, and V, respectively. As
for the signature verification, we reduce the cycles by 5.57%, 5.15%, and 5.08% for the
security levels II, III, and V, respectively. See Table 15 for a summary of the performance
cycles. In addition, we also summarize the stack usage in Table 16. The increases in stack
usage come from the optimization of the accumulation of the products in the matrix-vector
multiplication, Fermat number transform for cs1 and cs2, and Nussbaumer over Z2k for
ct0 in dilithium2.

6 Discussions
Applications to other Cortex processors. In this paper, we explore the impact of
the absences of powerful multiplication instructions on Cortex-M3 for Dilithium. For 32-bit
modular multiplications, our findings immediately apply to Cortex processors with similar
characteristics such as Cortex-M0, Cortex-M0+, and Cortex-M23 – there is only muls
instruction for multiplication on these processors. Therefore, one has to resort to software
emulation for the long multiplications in Montgomery multiplication. On the other hand, our
Barrett multiplication avoids this and will be faster than Montgomery multiplication. For



24 Multiplying Polynomials without Powerful Multiplication Instructions (Long Paper)

Table 15: Performance cycles of Dilithium on Cortex-M3. K stands for key generation, S
stands for signature generation, and V stands for signature verification.

NIST
Work

Operation
security K S V
level Cycles Hash Cycles Hash Cycles Hash

II [HAZ+24] 1 764k 1 185k 5 617k 2 173k 1 597k 1 065k
This work 1 540k 1 123k 4 554k 2 173k 1 508k 1 065k

III [HAZ+24] 2 944k 2 034k 7 448k 3 399k 2 659k 1 872k
This work 2 669k 2 034k 6 529k 3 399k 2 522k 1 872k

V [HAZ+24] 4 923k 3 510k 20 180k 14 195k 4 525k 3 347k
This work 4 448k 3 510k 18 383k 14 195k 4 295k 3 347k

Table 16: Stack usage in bytes of Dilithium on Cortex-M3. K stands for key generation, S
stands for signature generation, and V stands for signature verification.

NIST
Work

Operation
security K S V
level Stack Stack Stack

II [HAZ+24] 8 764 44 972 36 404
This work 11 804 76 876 36 356

III [HAZ+24] 9 780 69 020 57 900
This work 13 844 69 996 57 852

V [HAZ+24] 11 828 57 740 42 780
This work 17 940 67 436 42 732

Cortex-M processors implementing powerful scalar long multiplications such as Cortex-M4
and Cortex-M7, the floor variant of Barrett multiplication and Montgomery multiplication
perform the same. For high-end processors implementing Armv8.1-M MVE [Mar20] and
Armv7-A/Armv8-A Neon [ARM12,ARM21a] vector instruction sets/extensions, one should
apply the Barrett multiplication by [BHK+22b] since MVE and Neon implement powerful
vector multiplication instructions in the context of Dilithium12. See Table 17 for an overview
of recommended constant-time 32-bit modular multiplications for Cortex-M processors.
This work generalizes the Barrett multiplication by [BHK+22b] and applies the resulting
Barrett multiplication to platforms without powerful multiplication instructions.

Modular multiplications on other architectures and more. Generally speaking,
our generalization of Barrett multiplication scales well when the arithmetic precision is 1

2
to 1

4 of the target precision of shape-independent modular multiplication. For the case of
32-bit modular multiplications, this covers a wide range of legacy machines such 8-bit AVR
(cf. Appendix C), 16-bit MSP430, and some 32-bit architectures such as SPARC V7. For the
64-bit modular multiplications, we demonstrate the benefit of Barrett multiplication over
Montgomery multiplication with the Armv7E-M adopted by Cortex-M4 and Cortex-M7.
Algorithm 10 illustrates 64-bit Barrett multiplication and Algorithm 11 illustrates the
64-bit Montgomery multiplication. Algorithm 10 can be implemented straightforwardly and

12Following [BHK+22b], we can implement the vectorized 32-bit Barrett multiplication with instructions
sqrdmulh, mul, and mla in Neon. As for MVE, we can implement the vectorized 32-bit Barrett multiplication
with instructions vqrdmulh.s32, vmul.s32, and vmla.s32 [BHK+22b,BMK+22].
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Table 17: Overview of recommended constant-time 32-bit modular multiplications for
Cortex-M processors. ISA stands for the instruction set architecture, mod. mul. stands for
modular multiplication, Barrett (approx.) stands for the approximate variant of Barrett
multiplication, and MVE stands for the M-profile vector extension.

Processor ISA Recommended mod. mul.
Cortex-M0 Armv6-M Barrett (approx.), this work
Cortex-M0+ Armv6-M Barrett (approx.), this work
Cortex-M3 Armv7-M Barrett (approx.), this work
Cortex-M4 Armv7E-M Montgomery, [GKS21,ACC+21]
Cortex-M7 Armv7E-M Montgomery, [GKS21,ACC+21]
Cortex-M23 Armv8-M (Baseline) Barrett (approx.), this work
Cortex-M33 Armv8-M (Mainline) Montgomery, [GKS21,ACC+21]
Cortex-M52 Armv8.1-M (Mainline, MVE) Barrett, [BHK+22b,BMK+22]
Cortex-M55 Armv8.1-M (Mainline, MVE) Barrett, [BHK+22b,BMK+22]
Cortex-M85 Armv8.1-M (Mainline, MVE) Barrett, [BHK+22b,BMK+22]

Algorithm 11 incurs some register pressure issues. Nevertheless, we focus on the arithmetic
cost and ignore the register pressure issue of Algorithm 11 (Montgomery multiplication)
for simplicity. On Cortex-M4, each of the instructions in Algorithms 10 and 11 takes
one cycle based on the reference manuals [ARM10b, ARM10c]. Therefore, we need 9
arithmetic cycles for 64-bit Barrett multiplication and 15 arithmetic cycles for 64-bit
Montgomery multiplication. Similarly, if one really wants to implement a 96-bit/128-bit
shape-independent modular multiplication when precomputation is free, we believe Barrett
multiplication is more favorable than Montgomery multiplication on 64-bit architectures
such as aarch64 and x86-64.

Algorithm 10 64-bit Barrett multiplica-
tion.
Inputs: alo + 232ahi = a.
Inputs: blo + 232bhi = b.
Inputs: bplo + 232bphi =

⌊
264b

q

⌋
.

Outputs: clo + 232chi ≡ ab (mod q).
1: umull t, hihi, alo, bphi
2: umull t, hilo, ahi, bplo
3: umaal hilo, hihi, ahi, bphi
4: umull clo, chi, alo, blo
5: umlal clo, chi, hilo, nqlo
6: mla chi, alo, bhi, chi
7: mla chi, ahi, blo, chi
8: mla chi, hilo, nqhi, chi
9: mla chi, hihi, nqlo, chi

Algorithm 11 64-bit Montgomery multi-
plication.
Inputs: alo + 232ahi = a.
Inputs: blo + 232bhi = 264b mod q.
Outputs: clo + 232chi ≡ ab (mod q).

1: umull c0, c1, alo, blo
2: umull c2, c3, alo, bhi
3: umaal c1, c2, ahi, blo
4: umaal c2, c3, ahi, bhi
5: umull t0, t1, c0, qplo
6: mla t1, c0, qphi, t1
7: mla t1, c1, qplo, t1
8: umull h0, h1, t0, qlo
9: umull h2, h3, t0, qhi

10: umaal h1, h2, t1, qlo
11: umaal h2, h3, t1, qhi
12: adds c0, c0, h0
13: adcs c1, c1, h1
14: adcs c2, c2, h2
15: adc c3, c3, h3

NTT-friendly moduli in lattice-based cryptosystems. Our findings are of great
importance to the industrial deployment of lattice-based cryptosystems. Even though
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the timing side-channel issue of 32-bit long multiplications on Cortex-M3 was already
known in 2010 [GOPT10], several cryptosystems are designed with 32-bit arithmetic in
mind and mandate the use of 32-bit modular arithmetic, including Dilithium in the NIST
PQC Standardization initiated in 2016 [ABD+20a] and Raccoon in the NIST PQC Digital
Signature Schemes initiated in 2023 [dPEK+23]. Our 32-bit Barrett multiplication comes
to the rescue in this case. Furthermore, when people start designing cryptosystems built
upon 64-bit prime moduli, our 64-bit Barrett multiplication will also come to the rescue
for industrial deployment for legacy 32-bit machines as shown in previous paragraph.

NTT-friendliness of coefficient rings. We also challenge the notion of NTT-friendliness.
Generally speaking, NTT is definable over arbitrary rings (also for non-commutative
rings) [CK91], but many researchers introduced severely restricted forms of NTTs and
some said NTTs over Z2k are not supported:

• In page 10 of the specification of Dilithium [ABD+20a]: “The Fast Fourier Transform
is also called Number Theory Transform (NTT) in this case where the ground field
is a finite field”.

• In page 23 of the specification of Saber [DKRV20]: “The use of two-power moduli
makes NTT-like polynomial multiplication not natively supported.”

Our work brings attention to the performance of NTT-like polynomial multiplications over
Z2k , refreshing public understanding of asymptotically faster algorithms.

Performance figure of homomorphisms over Zr2w+1 and Z2k . This work shows
that Nussbaumer over Z2k is the fastest approach when k is far away from the arithmetic
precision, as illustrated by our Cortex-M3 implementation. On the other hand, Appendix C
shows that if k is too close to the arithmetic precision such that high-dimensional Nuss-
baumer cannot be deployed, NTTs over NTT-friendly coefficient rings remain to be the
fastest approach. Our findings bring attention to cryptographers on the impact of the
shape of coefficient rings that one has to take the following into account:

1. Is Zq NTT-friendly (so q must be an odd integer)?

2. If q is a power-of-two (so Zq is not NTT-friendly), is log2 q small enough compared
to the arithmetic precision?

If Zq is NTT-friendly, then one certainly applies the NTT over NTT-friendly coefficient ring.
If Zq is not NTT-friendly and q is a power-of-two (an even positive integer), one should
apply the Nussbaumer approach if log2 q is small enough compared to the arithmetic
precision; and if log2 q is too large, one should apply the NTT over a newly chosen
NTT-friendly coefficient ring.

Applications to Kyber. Kyber [ABD+20b] is a key encapsulation mechanism selected
by the NIST Post-Quantum Cryptography Standardization. In Kyber, the coefficient ring
is Z3329 and all the elements in Z3329 are stored as halfwords. On Cortex-M3, all the
multiplication instructions have 32-bit registers as operands and one can implement the
16-bit long/high multiplications efficiently with the 32 = 32×32 multiplication instructions
mul/mla/mls. Therefore, Barrett multiplication does not translate into an improvement
over the state-of-the-art modular multiplication by [AMOT22, HZZ+24]. On the other
hand, we do know that Barrett multiplication translates into improvement over other
modular multiplications for Kyber on 8-bit and 16-bit machines, such as the legacy 8-bit
AVR and the 16-bit MSP430. Please refer to Appendix C.2 for our Kyber’s NTT/iNTT
implementations on 8-bit AVR enviornment.
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Notes on power consumption and more. In this work, we study the efficiency
of Barrett multiplication modulo an odd modulus and Nussbaumer over Z2k . In pure
software optimization works targeting computation time, power consumption roughly
scales with the computation time, assuming inputs are random-looking and reporting
the power consumption does not convey much information. What is interesting is the
power consumption of the computations of special inputs commonly involved in power
side-channel attack works. Our Barrett multiplication and Nussbaumer introduce new
computational aspects not explored in the literature, and the power-consumption aspects
in the power-side-channel sense are left for future exploration.

A Saber
Saber [DKRV20] is a lattice-based 3rd round finalist KEM based on Module Learning with
Rounding. The module is of rank l× l over the polynomial ring Rq = Zq[x]/⟨xn + 1⟩ with
q = 213 and n = 256. The core polynomial arithmetic is to multiply a matrix of rank l× l by
a vector of l polynomials and inner product of vectors of l polynomials. The coefficients of
the vector operand in matrix-vector multiplication and one of the operands in inner product
are sampled from the centered binomial distribution with domain

{
−µ

2 , . . . , 0, . . . , µ
2

}
. See

Table 18 for parameters relevant to this work.

Table 18: Saber parameters [DKRV20] relevant to this work.

Parameter set NIST security level n q l µ

LightSaber I 256 213 2 10
Saber III 256 213 3 8
FireSaber V 256 213 4 6

In the key generation, we need one matrix-vector multiplication. In encryption, we
need one matrix-vector multiplication and one inner product where one of the vectors is
shared. In decryption, we only need one inner product. See Algorithms 12, 13, and 14 for
an illustration of the construction of Saber’s public key encryption (PKE) where operations
in blue are the optimization targets in this paper. To instantiate a KEM, Saber employs a
variant of Fujisaki-Okamoto transform due to [HHK17]. We need one encryption in the
encapsulation and one encryption and one decryption in the decapsulation.

Algorithm 12 Saber PKE Key Genera-
tion.
Output: pk = (seedA, b), sk = (s).

1: seedA ← SampleU ()
2: A ∈ Rl×l

q ← Expand(seedA)
3: s ∈ Rl

q ← SampleB()
4: b← Round

(
AT s

)
Algorithm 14 Saber PKE Decryption.
Input: ct = (c, b′), sk = (s).
Output: m.

1: v ← b′T s mod p
2: m← Round(v − 2ϵp−ϵT c mod p)

Algorithm 13 Saber PKE Encryption.
Input: m, r, pk = (seedA, b).
Output: ct = (c, b′).

1: A ∈ Rl×l
q ← Expand(seedA)

2: s′ ∈ Rl
q ← SampleB(r)

3: b′ ← Round (As′)
4: v′ ← bT s′ mod p
5: c← Round(v′ − 2ϵ−1m)
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B Saber on Cortex-M3

B.1 Matrix-Vector Multiplication and Inner Product

In Saber, the most time-consuming polynomial arithmetic is the matrix-vector multipli-
cations in key generation and encryption. The second most time-consuming polynomial
arithmetic is the inner products used in encryption and decryption. In encryption, since one
of the vector operands is shared with the matrix-vector multiplication, the inner product is
faster than the one in decryption [ACC+22]. We apply our Nussbaumer with Toom–Cook
over Z2k to matrix-vector multiplications and inner products in all parameter sets of Saber.
Compared to the state-of-the-art assembly implementations based on NTTs over NTT-
friendly rings [ACC+22], we obtain 1.42−1.46 times faster matrix-vector multiplications,
1.47−1.60 times faster inner products for encryption, and 1.32−1.38 times faster inner
products for decryption (cf. Tabel 19).

Table 19: Matrix-vector multiplications and inner products for Saber on Cortex-M3. MV
stands for matrix-vector multiplication, and IP stands for the inner product. For the inner
products, there are two numbers: one is used in encryption, and one is used in decryption.

Security MV IP(Enc/Dec)
level [ACC+22] This work [ACC+22] This work
I 199k 136k (1.46) 83k/116k 52k (1.60) / 84k (1.38)
III 391k 272k (1.44) 114k/164k 75k (1.52) / 122k (1.34)
V 644k 454k (1.42) 144k/211k 98k (1.47) / 160k (1.32)

B.2 Scheme

We compare our work to the state-of-the-art assembly-optimized implementation of Saber
on Cortex-M3 by [ACC+22]. After replacing polynomial arithmetic with Nussbaumer
followed by Toeplitz-TC4 in Saber, we reduce the key generation and encapsulation cycles
by around 15%, and decapsulation by around 17%. See Table 20 for a summary.

Table 20: Performance of Saber on Cortex-M3. K stands for key generation, E stands for
encapsulation, and D stands for decapsulation.

NIST
Work

Operation
security K E D
level Cycles Hash Cycles Hash Cycles Hash

I [ACC+22] 464k 226k 628k 316k 686k 248k
This work 397k 218k 534k 308k 568k 240k

III [ACC+22] 853k 411k 1079k 534k 1153k 433k
This work 743k 396k 918k 518k 962k 417k

V [ACC+22] 1333k 620k 1608k 765k 1709k 642k
This work 1131k 595k 1357k 739k 1424k 617k
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C 8-bit AVR Implementations
The 8-bit AVR microcontroller architecture employs a straightforward two-stage pipeline.
Most of its instructions execute in a single cycle. It is equipped with 32 general-purpose
8-bit registers, designated as [r0:r31]. Therefore, basic arithmetic operations, including
bit operations, are performed on 8-bit units. We describe the relevant instructions in 8-bit
AVR environment (cf. Table 21) [Atm16]. Analogous to the fundamental Cortex-M3, it
supports 8-bit operations like add, sub, adc, and sbc. lsl/lsr logically shifts an 8-bit
value left/right by one bit. asr performs an arithmetic 1-bit right-shift. Each of the above
instructions takes one cycle. Excluding the early AVR architectures like the ATtiny series,
which possesses byte-sized Static RAM (SRAM), the AVR microcontrollers primarily
accommodate multiplication instructions via a dedicated hardware multiplication unit. The
product of the multiplication is always returned in [r0:r1]. mul multiplies two unsigned
8-bit values, while muls multiplies two signed 8-bit values. mulsu multiplies 8-bit signed
and unsigned values. These multiplication instructions take two cycles. Unlike mul, which
allows all registers as operands, both muls and mulsu mandate the use of registers within
the [r16:r31] range as operands.

Table 21: Instruction timings on 8-bit AVR where inputs are 8-bit registers.
Instruction Cycle
add/adc/sub/sbc/lsl/lsr/asr 1
mul/muls/mulsu 2

We benchmark our 8-bit AVR implementation using the IAR Embedded Workbench.
We simulate them on the Generic Devices -v6 option with Max 16 MB of SRAM and
8 MB of flash memory. We compile our AVR implementations with the compiler of IAR
Embedded Workbench version 8.10.1 using High(speed) level optimization option. Since
8-bit AVR comprise the single-pipeline structure, our simulations provide cycle counts
equivalent to the benchmarks. To measure the stack size, we use the linker option (Enable
stack usage analysis) of IAR Embedded Workbench, and the code size is measured
through the information in the .map file.

C.1 32-bit Modular Multiplication on 8-bit AVR

We implement the full range of 16/32-bit low/high/long multiplications with 8-bit words
and build Montgomery (cf. Algorithm 15) and Barrett (cf. Algorithm 16) multiplication
with them.

Algorithm 15 Our constant-time Montgomery multiplication for Dilithium on 8-bit AVR
adapted from [Sei18].
Inputs: (a3∥ · · · ∥a0) = a, (b3∥ · · · ∥b0) = b

Outputs: (r7∥ · · · ∥r4) = ab−(abq−1 mod ±232)q

232 .
1: muls32x32_64 a0, · · · , a3, b0, · · · , b3, r0, · · · , r8 ▷ r = ab.
2: muls32xQinv_lo32 r0, · · · , r3, qiimm, t0, · · · , t3 ▷ t = abq−1 mod ±232.
3: muls32xQ_hi32 t0, · · · , t3, qimm, t4, · · · , t7 ▷ t = (abq−1 mod ±232)q

232 .
4: sub r4, t4 sbc r5, t5 sbc r6, t6 sbc r7, t7

▷ (r7∥ · · · ∥r4) = ab−(abq−1 mod ±232)q

232 .
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Algorithm 16 Constant-time Barrett multiplication for Dilithium on 8-bit AVR.

Inputs: (a3∥ · · · ∥a0) = a, (b3∥ · · · ∥b0) = b, (bp3∥ · · · ∥bp0) =
⌊

232b
q

⌉
.

((a3∥a2)= ah, (a1∥a0)= al, (bp3∥bp2)= bh, (bp1∥bp0)= bl)

Outputs: (c3∥ · · · ∥c0) = c = ab−
s

a
⌊

232b
q

⌉
232

{

1
q.

1: muls16x16_32 a2, a3, bp2, bp3, c0, · · · , c3 ▷ c = ahbh.
2: mulsu16x16_32 bp2, bp3, a0, a1, t0, · · · , t3 ▷ t = albh.
3: mov r0, t3 lsl r0 sbc r0, r0 ▷ r0 = SignExtend(t3[7 : 7]).
4: add c0, t2 adc c1, t3 adc c2, r0 adc c3, r0 ▷ c = ahbh +

⌊
albh

216

⌋
.

5: mulsu16x16_32 a2, a3, bp0, bp1, t0, · · · , t3 ▷ t = ahbl.
6: mov r0, t3 lsl r0 sbc r0, r0 ▷ r0 = SignExtend(t3[7 : 7]).
7: add c0, t2 adc c1, t3 adc c2, r0 adc c3, r0

▷ c = ahbh +
⌊

albh

216

⌋
+

⌊
ahbl

216

⌋
=

s
a
⌊

232b

q

⌉
232

{

1
.

8: muls32xQ_lo32 c0, · · · , c3, qimm, t0, · · · , t3 ▷ t =
s

a
⌊

232b
q

⌉
232

{

1
q

9: muls32x32_lo32 a0,· · · ,a3, b0,· · · ,b3, c0,· · · ,c3 ▷ r = ab mod ±232.
10: sub c0, t0 sbc c1, t1 sbc c2, t2 sbc c3, t3

▷ (c3∥ · · · ∥c0) = c = ab−
s

a
⌊

232b
q

⌉
232

{

1
q.

Algorithm 17 Implementation of muls32xQ_lo32 for Dilithium on 8-bit AVR.
Inputs: (a3∥ · · · ∥a0) = a
Outputs: (c3∥ · · · ∥c0) = aq mod ±232

1: movw c0, a0 movw c2, a2 ldi q, 0xE0 mul a0, q
2: add c1, r0 adc c2, r1 adc c3, zero mul a2, q
3: add c3, r0 mul a1, q add c2, r0 adc c3, r1
4: ldi q, 0x7F mul a0, q add c2, r0 adc c3, r1
5: mul a1, q add c3, r0

Table 22 summarizes the performance of plain multiplications (low, high, and long
multiplications) and modular multiplications (Montgomery and Barrett multiplications).

For the Barrett multiplication, we call three 16-bit long multiplications (one call
to muls16x16_32 and two calls to mulsu16x16_32) and two 32-bit low multiplications
(muls32xQ_lo32 and muls32x32_lo32). The generic multipliers are built upon the “Move-
and-Add” technique [LSSR+15,Ret21]. The macro muls16x16_32 multiplies two signed
16-bit values, and macro mulsu16x16_32 multiplies 16-bit signed and unsigned values. We
further optimize the 32-bit multiply-low when q = 223 − 213 + 1 is one of the operands by
exploiting the fact that the least significant byte of q is 1.

For Montgomery multiplication, we adapt the subtractive version from [Sei18] with
one 32-bit low multiplication, one 32-bit high multiplication, and one 32-bit long mul-
tiplication. Since the least significant words of q and q−1 mod ±232 in Dilithium are 1,
we optimize muls32xQinv_lo32 and muls32xQ_hi32 similarly as in muls32xQ_lo32 (cf.
Algorithm 17). For the 64-bit product ab, we implement muls32x32_64 with the row-wise
multiplication [GPW+04] technique for 32-bit long multiplication.

As shown in Table 22, the Barrett multiplication is 184
129 ≈ 1.43 times faster than

Montgomery multiplication, and close to the 32-bit long multiplication muls32x32_64.
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Table 22: Overview of assembly-optimized multiplication operations with 8-bit representa-
tion of 32-bit input values on 8-bit AVR. Q is the modulus q of Dilithium.

Plain multiplication
Multiplication operation Work Cycle
mulsu_16x16_32 [Ret21] 17
muls_16x16_32 [Ret21] 18
muls32xQ_lo32 This work 23
muls32x32_lo32 [Ret21] 36
muls32xQinv_lo32 This work 27
muls32xQ_hi32 This work 51
muls32x32_64 [Ret21] 102

Modular multiplication
Montgomery multiplication This work 184
Barrett multiplication This work 129

C.2 16-bit Modular Multiplication on 8-bit AVR
We will show the efficiency of 16-bit Barrett multiplication on 8-bit AVR. In this section,
we denote 16-bit primes as q′, for instance, q′ = 3329 or 7681. Considering the overhead of
signed 16-bit multiplication (18 cycles), we implement Solinas multiplication and Plantard
multiplication [Pla21, HZZ+22, HZZ+24], signed Montgomery multiplication, and our
signed Barrett multiplication. Additionally, we include a comparison with the unsigned
LookUp-Table multiplication introduced in [SLP+18]. For q′ = 3329, we implement the half-
approximate variant of Barrett multiplication (cf. Table 3) along with the lazy reduction
for NTT/iNTT. The upper bound q

2

(
5 + |a|

R

)
allows the application of the same lazy

reduction strategy as Montgomery multiplication in Kyber’s NTT/iNTT.
Table 23 summarizes the performance of various modular multiplications for q′ = 3329.

Our Barrett multiplication achieves approximately 30% performance improvement over
Montgomery multiplication and is the fastest in the AVR environment. Even when using
the Solinas multiplication to reduce the overhead of 16-bit multiplication, it remains
inefficient unless q′ is a complete Mersenne prime. For instance, Kyber’s q′ = 3329 =
212 − 29 − 28 + 1 requires significant additional computations, as shown in Table 23. The
Plantard multiplication is relevant in environments with 32-bit registers and powerful
multiplication instructions such as smulwb and smlabb . The LookUp-Table multiplication,
proposed for unsigned-representation, is less efficient in AVR environments due to the
additional stack or flash memory usage, despite the absence of cache memory.

Table 23: Overview of assembly-optimized multiplication 16-bit modular multiplication
(q′ = 3329) on 8-bit AVR

Modular multiplication
Type Arithmetic Work Cycle
Unsigned Solinas multiplication [YMÖS21] This work 94
Signed Plantard multiplication [HZZ+22] This work 74
Unsigned LookUp-Table multiplication [SLP+18] [SLP+18] 57
Signed Montgomery multiplication [Sei18] This work 50
Signed Barrett multiplication This work 38

While we do not fully implement Kyber’s entire scheme in this paper, we show the
effectiveness of Barrett multiplication for 16-bit polynomial multiplication through Ky-
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ber’s NTT/iNTT performance. Table 24 shows a comparison between Montgomery NTT
and Barrett NTT for Kyber on an 8-bit AVR platform. Our Barrett NTT outperforms
Montgomery NTT by approximately 170646

106450 ≈ 1.60× and 202484
125337 ≈ 1.61× in C language-

based NTT and iNTT, also the assembly implementation is approximately 67067
60005 ≈ 1.12×

and 84337
64337 ≈ 1.31× times faster. As mentioned earlier, the lazy reduction due to Half-

approximate eliminates the need for reduction in the middle of the NTT layer. Both
implementations differ only in pure arithmetic (Mongomery and Barrett). Furthermore,
our Barrett multiplication can be applied to rings with polynomial coefficients of 16 bits
or less, including NTTRU.

Table 24: Performance cycles of NTT/iNTT of Kyber on 8-bit AVR.

C Assembly
Montgomery Barrett Montgomery Barrett

NTT 170 646 106 450 (1.60) 67 067 60 005 (1.12)
iNTT 202 484 125 337 (1.61) 84 461 64 337 (1.31)

C.3 Dilithium

C.3.1 Dilithium NTT

Our C implementations of Barrett NTT and iNTT are 2709601
449457 ≈ 6.03× and 3191757

468207 ≈ 6.82×
faster than the C implementations of Montgomery ones. The main reason is that for the
long multiplication, the AVR compilers (IAR Embedded Workbench version 8.10.1 and
AVR-gcc version 13.1.0) compile it into a sign extension with a series of lsl and sbc
instructions and a series of mul instructions multiplying signed 8-bit words. Although this
approach results in much simpler register scheduling due to the flexibility of mul operands,
the resulting performance is slow. Our C implementation of Barrett Dilithium NTT/iNTT
avoids the long multiplications and, hence, is much faster.

As for the assembly implementations, we implement the assembly of Montgomery
NTT/iNTT with muls for fair comparisons. Since One have to maintain the 64-bit product
in the register while applying Montgomery multiplication, which necessitates additional
book-keeping operations, assembly-optimized Montgomery NTT/iNTT is slow. On the other
hand, our generalization of Barrett multiplication, which avoids the long multiplication,
removes the book-keeping operations (our generalization is necessary for this to happen).
This is why Barrett NTT and iNTT are 2.38−2.53 faster than Montgomery NTT and iNTT,
while the Barrett multiplication is only 1.43 times faster than Montgomery multiplication.
See Table 25 for a summary.

Table 25: Performance cycles of NTT/iNTT of Dilithium on 8-bit AVR.

C Assembly
Montgomery Barrett Montgomery Barrett

NTT 2 709 601 449 457 (6.03) 482 828 202 917 (2.38)
iNTT 3 191 757 468 207 (6.82) 596 740 236 028 (2.53)
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C.3.2 Matrix-Vector Product

Table 26 compares the performance of matrix-vector products with assembly-optimized
NTTs with Montgomery and Barrett multiplications. We find that the Barrett implemen-
tations are 1.87−1.89 times faster than the Montgomery implementations.

Table 26: Performance cycles of Dilithium matrix-vector products with assembly on 8-bit
AVR.

II III V
Montgomery 5 030 708 6 342 703 8 399 225
Barrett 2 662 661 3 389 428 4 501 286

C.3.3 Multiplication with the Challenge Polynomial

We apply a small NTT to cs1 and cs2, the same as the approach for the Cortex-M series.
We apply FNT (q = 257) for security levels II and V, and 16-bit NTT (q = 769) for security
level III. Our implementation of cs1 (cs2) is 4.74 (4.74), 3.29 (3.30), and 4.76 (4.76) times
faster than 32-bit NTT for security levels II, III, and V, respectively.

As for ct0, ideally, one should apply the two 16-bit NTT approach from [ACC+22]. We
show that this approach is 1.44 times faster than the 32-bit NTT approach for all security
levels as shown in Table 27. However, we do not apply the two 16-bit NTT approach to
the ct0 in our implementations of the full Dilithium scheme. We conclude that placing
the twiddle factor of the 32-bit NTT, FNT (small NTT) for cs1 (cs2), and the two 16-bit
NTTs (ct0) all in memory is not a realistic implementation option in an 8-bit AVR board.

Table 27: Performance cycles of the multiplication with the challenge polynomial with
assembly on 8-bit AVR. “32-bit” refers to the 32-bit Barrett NTT approach, and “16-bit”
refers to the 16-bit FNT/NTT approach for cs1 and cs2 and two 16-bit NTT approach for
ct0.

II III V
32-bit 16-bit 32-bit 16-bit 32-bit 16-bit

cs1 2 642 049 557 722 3 251 832 987 687 4 471 398 940 201
cs2 2 642 049 557 722 3 861 615 1 171 636 5 081 181 1 067 694
ct0 2 642 049 1 831 234 3 861 615 2 683 698 5 081 181 3 536 162

C.3.4 Scheme

Since the reference implementation consumes a significant amount of SRAM in the 8-bit
AVR environment and cannot be simulated, we implement a stack-optimized version
based on the reference code [ABD+20a] and designate it as the baseline (denoted as Ref).
Table 28 summarizes the performance of Dilithium. Table 29 shows a stack usage of our
implementation.

First, we compare the Ref using Montgomery multiplication with our implementation
using Barrett multiplication. Both implementations are coded in the C language. For
dilithium2, we reduce the key generation, signature generation, and signature verification
cycles by 35.11%, 60.38%, and 43.43%, respectively. For dilithium3, we reduce the key
generation, signature generation, and signature verification cycles by 45.09%, 59.20%, and
50.40%, respectively. For dilithium5, we reduce the key generation, signature generation,
and signature verification cycles by 43.18%, 54.48%, and 47.04%, respectively. The contri-
bution entirely comes from our C program implementing our generalization of Barrett
multiplication.
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Subsequently, we compare our hand-written assembly implementation with the C
implementations. For dilithium2, we reduce the key generation, signature generation, and
signature verification cycles by 39.94%, 64.90%, and 49.25%, respectively. For dilithium3,
we reduce the key generation, signature generation, and signature verification cycles by
48.85%, 63.03%, and 55.08%, respectively. For dilithium5, we reduce the key generation,
signature generation, and signature verification cycles by 46.86%, 58.09%, and 51.52%,
respectively.

All implementations (Ref∗∗ (C), This work (C), and This work (ASM)) of each Dilithium
process consume the same stack size, and the code size is about 50 KiB in all implemen-
tations. As can be seen from the comparison between C implementations, the 32-bit
multiply-long instruction is one of the most significant bottlenecks in the 8-bit AVR envi-
ronment. Especially, the significant performance improvement in the Dilithium signature
generation, dominated by the rejection loop, clearly highlights the benefits of Barrett
multiplication. With 16KB of SRAM, the 8-bit AVR board (e.g., ATMEGA1284-AU and
AVR128DB48) makes Dilithium security levels II and III practically feasible options.

Table 28: Performance cycles of Dilithium on 8-bit AVR.

Work
Operation

K S V
Cycles Hash Cycles Hash Cycles Hash

II
Ref ∗∗ (C) 73 556k 29 825k 166 961k 37 282k 86 860k 28 391k
This work (C) 47 732k 29 825k 66 156k 37 282k 49 138k 28 391k
This work (ASM) 44 181k 29 825k 58 600k 37 282k 44 081k 28 391k

III
Ref ∗∗ (C) 154 028k 53 915k 491 601k 119 877k 169 770k 49 901k
This work (C) 84 579k 53 915k 200 597k 119 877k 84 213k 49 901k
This work (ASM) 78 786k 53 915k 181 787k 119 877k 76 267k 49 901k

V
Ref ∗∗ (C) 255 058k 92 632k 1 091 977k 310 304k 276 570k 89 191k
This work (C) 144 925k 92 632k 497 054k 310 304k 146 478k 89 191k
This work (ASM) 135 525k 92 632k 457 611k 310 304k 134 076k 89 191k

∗∗ Our stack-optimized implementation based on reference code [ABD+20a].

Table 29: Stack usage in bytes of Dilithium on 8-bit AVR. K stands for key generation, S
stands for signature generation, and V stands for signature verification.

NIST
Work

Operation
security K S V
level Stack Stack Stack

II Ref ∗∗ (C) 9 282 12 059 12 751
This work (C, ASM) 9 282 12 059 12 751

III Ref ∗∗ (C) 11 330 14 107 13 775
This work (C, ASM) 11 330 14 107 13 775

V Ref ∗∗ (C) 13 378 16 155 16 079
This work (C, ASM) 13 378 16 155 16 079
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C.4 Saber
C.4.1 Fast Homomorphisms

Table 30 summarizes the performance of various homomorphisms for multiplication over
Zq within the range of 28 < q < 216 in the AVR environment. For an NTT-friendly Zq,
NTT exhibits the fastest performance. We choose q = 3329 for the 16-bit NTT and q = 257
for the 16-bit FNT. There are used in Dilithium. For the power-of-two q = 2k ≤ 216 in
Saber, we explore three approaches: (i) The 4-way Toom–Cook approach; (ii) The striding
4-way Toom–Cook approach; and (iii) The Nussbaumer approach. For the Nussbaumer
approach with 16-bit arithmetic, we have to resort to

Z2k [x]
⟨x256 + 1⟩ →

∏
i

(
Z2k+3
y64+1

)
[x]

⟨x− y16i⟩

resulting in 8 size-64 polynomial multiplications since 2k+3 = 216 in the Saber case. In this
case, the base multiplication phase is significantly slower than the transformation phase
due to the large number of subproblems. We find that striding TC is the fastest, followed
by TC and Nussbaumer with 16-bit arithmetic.

Table 30: Performance cycles of homomorphisms with 16-bit arithmetic in AVR.
C

Striding TC TC4 [DKRV20] Nussbaumer 16-bit NTT
Hom/NTT 12 011 45 532 67 379 105 450
Mul. 727 802 822 331 910 161 32 264
Hom-I/iNTT 46 532 65 432 88 069 125 337

ASM
Striding TC 16-bit NTT 16-bit FNT

Hom/NTT 7 016 60 005 47 750
Mul. 565 511 26 732 21 338
Hom-I/iNTT 25 175 64 337 58 405

C.4.2 Matrix-Vector Multiplication and Inner Product

We apply the 16-bit NTT and striding TC approaches to the matrix-vector multiplications
and inner products of Saber. We briefly compare their performance based on the assembly-
optimized 16-bit NTTs and striding TC. The matrix-vector multiplications with 16-bit
NTTs are 1.68−2.11 times faster than the ones with striding TC, and the inner products
with 16-bit NTTs are 1.79−2.62 times faster than the ones with striding TC. See Table 31
for a summary.

C.4.3 Scheme

Table 32 summarizes the performance of reference implementation and our implementations
with striding Toom–Cook and 16-bit NTTs. We compare the reference implementation to the
fastest implementation with 16-bit NTTs. For LightSaber, we reduce the key generation,
encapsulation, and decapsulation cycles by 18.79%, 15.41%, and 17.95%, respectively.
For Saber, we reduce the key generation, encapsulation, and decapsulation cycles by
24.76%, 16.84%, and 19.35%, respectively. For FireSaber, we reduce the key generation,
encapsulation, and decapsulation cycles by 28.75%, 17.80%, and 19.50%, respectively.
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Table 31: Performance cycles of matrix-vector multiplications and inner products in Saber
on 8-bit AVR.

NIST [DKRV20] (C) This work (ASM)† This work (C) This work (ASM)
level (TC4) (2× 16 NTT) (Striding TC) (Striding TC)
Security MV
I 3 733k 1 386k 3 193k 2 419k
III 8 400k 2 600k 7 185k 5 443k
V 14 933k 4 160k 12 774k 9 676k

IP(Enc/Dec)
I 1 867k 573k / 716k 1 597k 1 209k
III 2 800k 747k / 1 009k 2 395k 1 814k
V 3 733k 920k / 1 303k 3 193k 2 419k

† : Our 2 × 16 NTT implementation based on Strategy A of [ACC+22].

Table 32: Performance cycles of Saber on 8-bit AVR.

NIST
Work

Operation
security K E D
level Cycles Hash Cycles Hash Cycles Hash

I
[DKRV20] (C) 11 363k 5 736k 16 075k 8 030k 15 816k 6 309k
This work (ASM) 10 086k 5 736k 14 161k 8 030k 13 368k 6 309k
This work (ASM)† 9 228k 5 736k 13 596k 8 030k 12 977k 6 309k

III
[DKRV20] (C) 21 828k 10 611k 28 496k 13 766k 28 153k 11 185k
This work (ASM) 18 959k 10 611k 24 678k 13 766k 23 379k 11 185k
This work (ASM)† 16 424k 10 611k 23 697k 13 766k 22 706k 11 185k

V
[DKRV20] (C) 35 266k 16 060k 43 553k 19 788k 43 469k 16 633k
This work (ASM) 30 171k 16 060k 37 197k 19 788k 35 944k 16 633k
This work (ASM)† 25 126k 16 060k 35 800k 19 788k 34 900k 16 633k

† : Our 2 × 16 NTT implementation based on Strategy A of [ACC+22].
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