
Efficient Multiplication of
Somewhat Small Integers
using Number-Theoretic Transforms
Hanno Becker Vincent Hwang Matthias J. Kannwischer
Lorenz Panny Bo-Yin Yang

31 August 2022, IWSEC 2022, Tokyo, Japan [online]

Institute of Information Science, Academia Sinica

From integers to polynomials and back

Task: Given a,b ∈ Z, compute c = a · b.

Observation: This is equivalent to multiplying polynomials.

• ℓ-bit chunking: Write a =
∑n

i=0(2ℓ)iai and replace 2ℓ by x, giving fa =
∑

aixi ∈ Z[x].
• polynomial multiplication: Compute fc = fa · fb ∈ Z[x] using any method.
• “dechunking”: Replace x in fc by 2ℓ. (In other words, evaluate fc at 2ℓ.)

Correctness: The map x 7→ 2ℓ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f,g ∈ Z[x],
choose large 2ℓ, compute c = f(2ℓ) · g(2ℓ), and recover f · g from c via ℓ-bit chunking.)

31 August 2022 1/24

Institute of Information Science, Academia Sinica

From integers to polynomials and back

Task: Given a,b ∈ Z, compute c = a · b.

Observation: This is equivalent to multiplying polynomials.

• ℓ-bit chunking: Write a =
∑n

i=0(2ℓ)iai and replace 2ℓ by x, giving fa =
∑

aixi ∈ Z[x].
• polynomial multiplication: Compute fc = fa · fb ∈ Z[x] using any method.
• “dechunking”: Replace x in fc by 2ℓ. (In other words, evaluate fc at 2ℓ.)

Correctness: The map x 7→ 2ℓ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f,g ∈ Z[x],
choose large 2ℓ, compute c = f(2ℓ) · g(2ℓ), and recover f · g from c via ℓ-bit chunking.)

31 August 2022 1/24

Institute of Information Science, Academia Sinica

From integers to polynomials and back

Task: Given a,b ∈ Z, compute c = a · b.

Observation: This is equivalent to multiplying polynomials.

• ℓ-bit chunking: Write a =
∑n

i=0(2ℓ)iai and replace 2ℓ by x, giving fa =
∑

aixi ∈ Z[x].

• polynomial multiplication: Compute fc = fa · fb ∈ Z[x] using any method.
• “dechunking”: Replace x in fc by 2ℓ. (In other words, evaluate fc at 2ℓ.)

Correctness: The map x 7→ 2ℓ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f,g ∈ Z[x],
choose large 2ℓ, compute c = f(2ℓ) · g(2ℓ), and recover f · g from c via ℓ-bit chunking.)

31 August 2022 1/24

Institute of Information Science, Academia Sinica

From integers to polynomials and back

Task: Given a,b ∈ Z, compute c = a · b.

Observation: This is equivalent to multiplying polynomials.

• ℓ-bit chunking: Write a =
∑n

i=0(2ℓ)iai and replace 2ℓ by x, giving fa =
∑

aixi ∈ Z[x].
• polynomial multiplication: Compute fc = fa · fb ∈ Z[x] using any method.

• “dechunking”: Replace x in fc by 2ℓ. (In other words, evaluate fc at 2ℓ.)

Correctness: The map x 7→ 2ℓ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f,g ∈ Z[x],
choose large 2ℓ, compute c = f(2ℓ) · g(2ℓ), and recover f · g from c via ℓ-bit chunking.)

31 August 2022 1/24

Institute of Information Science, Academia Sinica

From integers to polynomials and back

Task: Given a,b ∈ Z, compute c = a · b.

Observation: This is equivalent to multiplying polynomials.

• ℓ-bit chunking: Write a =
∑n

i=0(2ℓ)iai and replace 2ℓ by x, giving fa =
∑

aixi ∈ Z[x].
• polynomial multiplication: Compute fc = fa · fb ∈ Z[x] using any method.
• “dechunking”: Replace x in fc by 2ℓ. (In other words, evaluate fc at 2ℓ.)

Correctness: The map x 7→ 2ℓ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f,g ∈ Z[x],
choose large 2ℓ, compute c = f(2ℓ) · g(2ℓ), and recover f · g from c via ℓ-bit chunking.)

31 August 2022 1/24

Institute of Information Science, Academia Sinica

From integers to polynomials and back

Task: Given a,b ∈ Z, compute c = a · b.

Observation: This is equivalent to multiplying polynomials.

• ℓ-bit chunking: Write a =
∑n

i=0(2ℓ)iai and replace 2ℓ by x, giving fa =
∑

aixi ∈ Z[x].
• polynomial multiplication: Compute fc = fa · fb ∈ Z[x] using any method.
• “dechunking”: Replace x in fc by 2ℓ. (In other words, evaluate fc at 2ℓ.)

Correctness: The map x 7→ 2ℓ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f,g ∈ Z[x],
choose large 2ℓ, compute c = f(2ℓ) · g(2ℓ), and recover f · g from c via ℓ-bit chunking.)

31 August 2022 1/24

Institute of Information Science, Academia Sinica

From integers to polynomials and back

Task: Given a,b ∈ Z, compute c = a · b.

Observation: This is equivalent to multiplying polynomials.

• ℓ-bit chunking: Write a =
∑n

i=0(2ℓ)iai and replace 2ℓ by x, giving fa =
∑

aixi ∈ Z[x].
• polynomial multiplication: Compute fc = fa · fb ∈ Z[x] using any method.
• “dechunking”: Replace x in fc by 2ℓ. (In other words, evaluate fc at 2ℓ.)

Correctness: The map x 7→ 2ℓ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f,g ∈ Z[x],
choose large 2ℓ, compute c = f(2ℓ) · g(2ℓ), and recover f · g from c via ℓ-bit chunking.)

31 August 2022 1/24

Institute of Information Science, Academia Sinica

FFT-based polynomial multiplication

Observation: Multiplication in product rings R1 × · · · × Rn is component-wise =⇒ O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[x]/(f · g) ∼= R[x]/f× R[x]/g.

Fourier transform computes R[x]/(xn − 1) ∼−−→
∏n−1

i=0 R[x]/(x− ωi
n).

(Here ωn is a principal nth root of unity. Over C, can use ωn = exp(2πi/n).)

Fast Fourier transform takes time only O(n log n)! Essential trick: remainder tree.

=⇒ [FFT + pointwise multiplication + inverse FFT] is only O(n log n) operations in R.

31 August 2022 2/24

Institute of Information Science, Academia Sinica

FFT-based polynomial multiplication

Observation: Multiplication in product rings R1 × · · · × Rn is component-wise =⇒ O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[x]/(f · g) ∼= R[x]/f× R[x]/g.

Fourier transform computes R[x]/(xn − 1) ∼−−→
∏n−1

i=0 R[x]/(x− ωi
n).

(Here ωn is a principal nth root of unity. Over C, can use ωn = exp(2πi/n).)

Fast Fourier transform takes time only O(n log n)! Essential trick: remainder tree.

=⇒ [FFT + pointwise multiplication + inverse FFT] is only O(n log n) operations in R.

31 August 2022 2/24

Institute of Information Science, Academia Sinica

FFT-based polynomial multiplication

Observation: Multiplication in product rings R1 × · · · × Rn is component-wise =⇒ O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[x]/(f · g) ∼= R[x]/f× R[x]/g.

Fourier transform computes R[x]/(xn − 1) ∼−−→
∏n−1

i=0 R[x]/(x− ωi
n).

(Here ωn is a principal nth root of unity. Over C, can use ωn = exp(2πi/n).)

Fast Fourier transform takes time only O(n log n)! Essential trick: remainder tree.

=⇒ [FFT + pointwise multiplication + inverse FFT] is only O(n log n) operations in R.

31 August 2022 2/24

Institute of Information Science, Academia Sinica

FFT-based polynomial multiplication

Observation: Multiplication in product rings R1 × · · · × Rn is component-wise =⇒ O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[x]/(f · g) ∼= R[x]/f× R[x]/g.

Fourier transform computes R[x]/(xn − 1) ∼−−→
∏n−1

i=0 R[x]/(x− ωi
n).

(Here ωn is a principal nth root of unity. Over C, can use ωn = exp(2πi/n).)

Fast Fourier transform takes time only O(n log n)! Essential trick: remainder tree.

=⇒ [FFT + pointwise multiplication + inverse FFT] is only O(n log n) operations in R.

31 August 2022 2/24

Institute of Information Science, Academia Sinica

FFT-based polynomial multiplication

Observation: Multiplication in product rings R1 × · · · × Rn is component-wise =⇒ O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[x]/(f · g) ∼= R[x]/f× R[x]/g.

Fourier transform computes R[x]/(xn − 1) ∼−−→
∏n−1

i=0 R[x]/(x− ωi
n).

(Here ωn is a principal nth root of unity. Over C, can use ωn = exp(2πi/n).)

Fast Fourier transform takes time only O(n log n)!

Essential trick: remainder tree.

=⇒ [FFT + pointwise multiplication + inverse FFT] is only O(n log n) operations in R.

31 August 2022 2/24

Institute of Information Science, Academia Sinica

FFT-based polynomial multiplication

Observation: Multiplication in product rings R1 × · · · × Rn is component-wise =⇒ O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[x]/(f · g) ∼= R[x]/f× R[x]/g.

Fourier transform computes R[x]/(xn − 1) ∼−−→
∏n−1

i=0 R[x]/(x− ωi
n).

(Here ωn is a principal nth root of unity. Over C, can use ωn = exp(2πi/n).)

Fast Fourier transform takes time only O(n log n)! Essential trick: remainder tree.

=⇒ [FFT + pointwise multiplication + inverse FFT] is only O(n log n) operations in R.

31 August 2022 2/24

Institute of Information Science, Academia Sinica

FFT-based polynomial multiplication

Observation: Multiplication in product rings R1 × · · · × Rn is component-wise =⇒ O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[x]/(f · g) ∼= R[x]/f× R[x]/g.

Fourier transform computes R[x]/(xn − 1) ∼−−→
∏n−1

i=0 R[x]/(x− ωi
n).

(Here ωn is a principal nth root of unity. Over C, can use ωn = exp(2πi/n).)

Fast Fourier transform takes time only O(n log n)! Essential trick: remainder tree.

=⇒ [FFT + pointwise multiplication + inverse FFT] is only O(n log n) operations in R.

31 August 2022 2/24

Institute of Information Science, Academia Sinica

FFT tree for R[x]/(x2m − 1)

x8 − 1

x4 − 1

x2 − 1

x− 1

=

x−ω0
8

x+ 1

=

x−ω4
8

x2 + 1

x− ω2
8=

x−ω2
8

x+ ω2
8=

x−ω6
8

x4 + 1

x2 − ω2
8

x− ω8=

x−ω1
8

x+ ω8=

x−ω5
8

x2 + ω2
8

x− ω3
8=

x−ω3
8

x+ ω3
8=

x−ω7
8

31 August 2022 3/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.
• xi-coefficient of “left” output is (ci + τck+i).
• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.
• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).
• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.

• xi-coefficient of “left” output is (ci + τck+i).
• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.
• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).
• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.
• xi-coefficient of “left” output is (ci + τck+i).

• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.
• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).
• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.
• xi-coefficient of “left” output is (ci + τck+i).
• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.
• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).
• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.
• xi-coefficient of “left” output is (ci + τck+i).
• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.

• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).
• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.
• xi-coefficient of “left” output is (ci + τck+i).
• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.
• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).

• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.
• xi-coefficient of “left” output is (ci + τck+i).
• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.
• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).
• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x2k − τ 2)
∼−→ R[x]/(xk − τ)× R[x]/(xk + τ).

• Input: c0 + c1x+ ...+ c2k−1x2k−1.
• xi-coefficient of “left” output is (ci + τck+i).
• xi-coefficient of “right” output is (ci − τck+i).

Going up one layer: Compute the inverse map.
• For each i, have di = ci + τck+i and ei = ci − τck+i; want (ci, ck+i).
• Linear algebra ⇝ ci = (di + ei)/2 and ck+i = τ−1(di − ei)/2.

=⇒ Work per layer is O(n), and there are O(log n) layers. =⇒ O(n log n).

31 August 2022 4/24

Institute of Information Science, Academia Sinica

Butterflies

Cooley–Tukey butterfly

ci //

''OO
OOO

OOO
OOO

OOO
O /.-,()*++ // ci + τck+i

ck+i // /.-,()*+×
��

@@������

// /.-,()*+− // ci − τck+i

τ

OO

Reduce f = c0 + c1x+ ...+ c2k−1c2k−1

modulo (xk − τ) and (xk + τ).

Gentleman–Sande butterfly

di //

��:
::

::
::

:
/.-,()*++ // di + ei

ei //
���

AA���� /.-,()*+− // /.-,()*+× // τ−1(di − ei)

τ−1

OO

Recover 2 · f ∈ R[x]/(x2k − τ 2)

from
(
f mod (xk − τ), f mod (xk + τ)

)
.

31 August 2022 5/24

Institute of Information Science, Academia Sinica

Butterflies

Cooley–Tukey butterfly

ci //

''OO
OOO

OOO
OOO

OOO
O /.-,()*++ // ci + τck+i

ck+i // /.-,()*+×
��

@@������

// /.-,()*+− // ci − τck+i

τ

OO

Reduce f = c0 + c1x+ ...+ c2k−1c2k−1

modulo (xk − τ) and (xk + τ).

Gentleman–Sande butterfly

di //

��:
::

::
::

:
/.-,()*++ // di + ei

ei //
���

AA���� /.-,()*+− // /.-,()*+× // τ−1(di − ei)

τ−1

OO

Recover 2 · f ∈ R[x]/(x2k − τ 2)

from
(
f mod (xk − τ), f mod (xk + τ)

)
.

31 August 2022 5/24

Institute of Information Science, Academia Sinica

Butterflies

Cooley–Tukey butterfly

ci //

''OO
OOO

OOO
OOO

OOO
O /.-,()*++ // ci + τck+i

ck+i // /.-,()*+×
��

@@������

// /.-,()*+− // ci − τck+i

τ

OO

Reduce f = c0 + c1x+ ...+ c2k−1c2k−1

modulo (xk − τ) and (xk + τ).

Gentleman–Sande butterfly

di //

��:
::

::
::

:
/.-,()*++ // di + ei

ei //
���

AA���� /.-,()*+− // /.-,()*+× // τ−1(di − ei)

τ−1

OO

Recover 2 · f ∈ R[x]/(x2k − τ 2)

from
(
f mod (xk − τ), f mod (xk + τ)

)
.

31 August 2022 5/24

Institute of Information Science, Academia Sinica

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically Fq).
Much more convenient for computers than, say, working over C.

• Multiplications in Z[x] can be emulated by choosing q large enough.

We require an nth principal root of unity. For Fq, this means n | (q− 1).
• If ωn doesn’t exist but ωn/d does, can do incomplete NTT: xn − 1 =

∏n/d−1
i=0 (xd − ωi

n/d).
Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with q = q1q2.
• Compute NTT modulo q1 and q2 separately, recombine via CRT Fq1 × Fq2

∼−→ Z/q.

31 August 2022 6/24

Institute of Information Science, Academia Sinica

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically Fq).
Much more convenient for computers than, say, working over C.

• Multiplications in Z[x] can be emulated by choosing q large enough.

We require an nth principal root of unity. For Fq, this means n | (q− 1).
• If ωn doesn’t exist but ωn/d does, can do incomplete NTT: xn − 1 =

∏n/d−1
i=0 (xd − ωi

n/d).
Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with q = q1q2.
• Compute NTT modulo q1 and q2 separately, recombine via CRT Fq1 × Fq2

∼−→ Z/q.

31 August 2022 6/24

Institute of Information Science, Academia Sinica

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically Fq).
Much more convenient for computers than, say, working over C.

• Multiplications in Z[x] can be emulated by choosing q large enough.

We require an nth principal root of unity. For Fq, this means n | (q− 1).

• If ωn doesn’t exist but ωn/d does, can do incomplete NTT: xn − 1 =
∏n/d−1

i=0 (xd − ωi
n/d).

Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with q = q1q2.
• Compute NTT modulo q1 and q2 separately, recombine via CRT Fq1 × Fq2

∼−→ Z/q.

31 August 2022 6/24

Institute of Information Science, Academia Sinica

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically Fq).
Much more convenient for computers than, say, working over C.

• Multiplications in Z[x] can be emulated by choosing q large enough.

We require an nth principal root of unity. For Fq, this means n | (q− 1).
• If ωn doesn’t exist but ωn/d does, can do incomplete NTT: xn − 1 =

∏n/d−1
i=0 (xd − ωi

n/d).
Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with q = q1q2.
• Compute NTT modulo q1 and q2 separately, recombine via CRT Fq1 × Fq2

∼−→ Z/q.

31 August 2022 6/24

Institute of Information Science, Academia Sinica

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically Fq).
Much more convenient for computers than, say, working over C.

• Multiplications in Z[x] can be emulated by choosing q large enough.

We require an nth principal root of unity. For Fq, this means n | (q− 1).
• If ωn doesn’t exist but ωn/d does, can do incomplete NTT: xn − 1 =

∏n/d−1
i=0 (xd − ωi

n/d).
Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with q = q1q2.

• Compute NTT modulo q1 and q2 separately, recombine via CRT Fq1 × Fq2
∼−→ Z/q.

31 August 2022 6/24

Institute of Information Science, Academia Sinica

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically Fq).
Much more convenient for computers than, say, working over C.

• Multiplications in Z[x] can be emulated by choosing q large enough.

We require an nth principal root of unity. For Fq, this means n | (q− 1).
• If ωn doesn’t exist but ωn/d does, can do incomplete NTT: xn − 1 =

∏n/d−1
i=0 (xd − ωi

n/d).
Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with q = q1q2.
• Compute NTT modulo q1 and q2 separately, recombine via CRT Fq1 × Fq2

∼−→ Z/q.

31 August 2022 6/24

Institute of Information Science, Academia Sinica

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. =⇒ Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
=⇒ Chop into ≤word-sized coefficients; use longer NTT if needed.
=⇒ Use ≤word-sized moduli qi suitable for fast reductions.

Our algorithm isn’t even properly specified for arbitrary lengths. If it were, it would scale
worse than Schönhage–Strassen. Still, it appears to be faster for medium-sized integers!

31 August 2022 7/24

Institute of Information Science, Academia Sinica

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. =⇒ Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
=⇒ Chop into ≤word-sized coefficients; use longer NTT if needed.
=⇒ Use ≤word-sized moduli qi suitable for fast reductions.

Our algorithm isn’t even properly specified for arbitrary lengths. If it were, it would scale
worse than Schönhage–Strassen. Still, it appears to be faster for medium-sized integers!

31 August 2022 7/24

Institute of Information Science, Academia Sinica

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. =⇒ Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

=⇒ Chop into ≤word-sized coefficients; use longer NTT if needed.
=⇒ Use ≤word-sized moduli qi suitable for fast reductions.

Our algorithm isn’t even properly specified for arbitrary lengths. If it were, it would scale
worse than Schönhage–Strassen. Still, it appears to be faster for medium-sized integers!

31 August 2022 7/24

Institute of Information Science, Academia Sinica

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. =⇒ Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
=⇒ Chop into ≤word-sized coefficients; use longer NTT if needed.

=⇒ Use ≤word-sized moduli qi suitable for fast reductions.

Our algorithm isn’t even properly specified for arbitrary lengths. If it were, it would scale
worse than Schönhage–Strassen. Still, it appears to be faster for medium-sized integers!

31 August 2022 7/24

Institute of Information Science, Academia Sinica

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. =⇒ Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
=⇒ Chop into ≤word-sized coefficients; use longer NTT if needed.
=⇒ Use ≤word-sized moduli qi suitable for fast reductions.

Our algorithm isn’t even properly specified for arbitrary lengths. If it were, it would scale
worse than Schönhage–Strassen. Still, it appears to be faster for medium-sized integers!

31 August 2022 7/24

Institute of Information Science, Academia Sinica

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. =⇒ Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
=⇒ Chop into ≤word-sized coefficients; use longer NTT if needed.
=⇒ Use ≤word-sized moduli qi suitable for fast reductions.

Our algorithm isn’t even properly specified for arbitrary lengths. If it were, it would scale
worse than Schönhage–Strassen. Still, it appears to be faster for medium-sized integers!

31 August 2022 7/24

Institute of Information Science, Academia Sinica

Our work

• Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

• Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

• Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Conclusion: NTTs can compete—even win!— for integers around a few thousand bits.

Compare conventional wisdom:
“[Schönhage–Strassen] starts to outperform [...] for numbers beyond 2215 to 2217 .”

(Wikipedia)

31 August 2022 8/24

Institute of Information Science, Academia Sinica

Our work

• Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

• Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

• Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Conclusion: NTTs can compete—even win!— for integers around a few thousand bits.

Compare conventional wisdom:
“[Schönhage–Strassen] starts to outperform [...] for numbers beyond 2215 to 2217 .”

(Wikipedia)

31 August 2022 8/24

Institute of Information Science, Academia Sinica

Our work

• Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

• Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

• Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Conclusion: NTTs can compete—even win!— for integers around a few thousand bits.

Compare conventional wisdom:
“[Schönhage–Strassen] starts to outperform [...] for numbers beyond 2215 to 2217 .”

(Wikipedia)

31 August 2022 8/24

Institute of Information Science, Academia Sinica

Our work

• Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

• Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

• Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Conclusion: NTTs can compete—even win!— for integers around a few thousand bits.

Compare conventional wisdom:
“[Schönhage–Strassen] starts to outperform [...] for numbers beyond 2215 to 2217 .”

(Wikipedia)

31 August 2022 8/24

Institute of Information Science, Academia Sinica

Our work

• Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

• Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

• Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Conclusion: NTTs can compete—even win!— for integers around a few thousand bits.

Compare conventional wisdom:
“[Schönhage–Strassen] starts to outperform [...] for numbers beyond 2215 to 2217 .”

(Wikipedia)

31 August 2022 8/24

Institute of Information Science, Academia Sinica

Target Architectures

• Focus on 32-bit Arm microcontrollers
• First target: Arm Cortex-M3

• Announced in 2004
• Implements Armv7-M
• Interesting/dangerous feature:
Timing of long multiplications (e.g.,
UMULL) is input-dependent
→ Avoid for constant-time code

• We make use of STM32
Nucleo-F207ZG with the STM32F207ZG

• $ 20

31 August 2022 9/24

Institute of Information Science, Academia Sinica

Target Architectures

• Focus on 32-bit Arm microcontrollers
• First target: Arm Cortex-M3

• Announced in 2004
• Implements Armv7-M
• Interesting/dangerous feature:
Timing of long multiplications (e.g.,
UMULL) is input-dependent
→ Avoid for constant-time code

• We make use of STM32
Nucleo-F207ZG with the STM32F207ZG

• $ 20

31 August 2022 9/24

Institute of Information Science, Academia Sinica

Target Architectures

• Focus on 32-bit Arm microcontrollers
• First target: Arm Cortex-M3

• Announced in 2004
• Implements Armv7-M
• Interesting/dangerous feature:
Timing of long multiplications (e.g.,
UMULL) is input-dependent
→ Avoid for constant-time code

• We make use of STM32
Nucleo-F207ZG with the STM32F207ZG

• $ 20

31 August 2022 9/24

Institute of Information Science, Academia Sinica

Target Architectures (2)

• Second target: Arm Cortex-M55
• Announced in 2020
• Implements Armv8-M
• First core to implement the M-profile
vector extension (MVE) a.k.a. Helium

• No development boards available as
of now

• We use an FPGA prototyping board
(Arm MPS3) with the AN552 model

• $ 1500

31 August 2022 10/24

Institute of Information Science, Academia Sinica

Target Architectures (2)

• Second target: Arm Cortex-M55
• Announced in 2020
• Implements Armv8-M
• First core to implement the M-profile
vector extension (MVE) a.k.a. Helium

• No development boards available as
of now

• We use an FPGA prototyping board
(Arm MPS3) with the AN552 model

• $ 1500

31 August 2022 10/24

Institute of Information Science, Academia Sinica

Fermat Number Transforms (FNT)

• Recall: For NTTs we require 2k | q− 1 with prime q
• Fermat numbers: 22k + 1
• Fermat primes: 3, 5, 17, 257, 65537
• Example: 65537

• ω2 = −1 = 216

• ω4 = 28

• ω8 = 24

• ω16 = 22

• ω32 = 21

• First 5 layers of the FFT have multiplications by powers of two
→ Can use shifts instead of multiplications
→ Particularly useful on the Cortex-M3!

31 August 2022 11/24

Institute of Information Science, Academia Sinica

Fermat Number Transforms (FNT)

• Recall: For NTTs we require 2k | q− 1 with prime q
• Fermat numbers: 22k + 1
• Fermat primes: 3, 5, 17, 257, 65537
• Example: 65537

• ω2 = −1 = 216

• ω4 = 28

• ω8 = 24

• ω16 = 22

• ω32 = 21

• First 5 layers of the FFT have multiplications by powers of two
→ Can use shifts instead of multiplications
→ Particularly useful on the Cortex-M3!

31 August 2022 11/24

Institute of Information Science, Academia Sinica

Fermat Number Transforms (FNT)

• Recall: For NTTs we require 2k | q− 1 with prime q
• Fermat numbers: 22k + 1
• Fermat primes: 3, 5, 17, 257, 65537
• Example: 65537

• ω2 = −1 = 216

• ω4 = 28

• ω8 = 24

• ω16 = 22

• ω32 = 21

• First 5 layers of the FFT have multiplications by powers of two
→ Can use shifts instead of multiplications
→ Particularly useful on the Cortex-M3!

31 August 2022 11/24

Institute of Information Science, Academia Sinica

Parameter Choices

• High-level goal: Efficient N-bit (2048, 4096) multiplication
• Chunk up number in ℓ-bit coefficients
• Pad with zeros to have an n-coefficient polynomial
• Each coefficient is modulo small q = q1q2

• Perform a k-layer NTT-based multiplication
• Constraint 1: We want to make efficient use of the available multipliers

• M3:
mul 32 × 32 → 32 bit (low multiplication)
→ want to limit moduli qi to 16 bit
→ special case: FNT with q2 = 65537 for NTT

• M55:
vmul 32 × 32 → 32 bit (low multiplication)
vqrdmulh: 32 × 32 → 32 bit (rounding doubling high multiplication)
→ want to limit moduli qi to 32 bit

31 August 2022 12/24

Institute of Information Science, Academia Sinica

Parameter Choices

• High-level goal: Efficient N-bit (2048, 4096) multiplication
• Chunk up number in ℓ-bit coefficients
• Pad with zeros to have an n-coefficient polynomial
• Each coefficient is modulo small q = q1q2

• Perform a k-layer NTT-based multiplication
• Constraint 1: We want to make efficient use of the available multipliers

• M3:
mul 32 × 32 → 32 bit (low multiplication)
→ want to limit moduli qi to 16 bit
→ special case: FNT with q2 = 65537 for NTT

• M55:
vmul 32 × 32 → 32 bit (low multiplication)
vqrdmulh: 32 × 32 → 32 bit (rounding doubling high multiplication)
→ want to limit moduli qi to 32 bit

31 August 2022 12/24

Institute of Information Science, Academia Sinica

Parameter Choices (2)

• Constraint 2: Need to be able to represent the 2N-bit result
→ n ≥ d2N/ℓe

• Constraint 3: n should be NTT-friendly
→ power of two or small multiple of power of two

• Constraint 4: Require NTT-friendly modulus
→ restrict to prime q1,q2
→ 2k | q1 − 1 and 2k | q2 − 1 to have the required principal roots of unity

• Constraint 5: Coefficients of polynomial product must not overflow q
→ q ≥ dN/ℓe · 22ℓ

31 August 2022 13/24

Institute of Information Science, Academia Sinica

Parameter Choices (2)

• Constraint 2: Need to be able to represent the 2N-bit result
→ n ≥ d2N/ℓe

• Constraint 3: n should be NTT-friendly
→ power of two or small multiple of power of two

• Constraint 4: Require NTT-friendly modulus
→ restrict to prime q1,q2
→ 2k | q1 − 1 and 2k | q2 − 1 to have the required principal roots of unity

• Constraint 5: Coefficients of polynomial product must not overflow q
→ q ≥ dN/ℓe · 22ℓ

31 August 2022 13/24

Institute of Information Science, Academia Sinica

Parameter Choices (2)

• Constraint 2: Need to be able to represent the 2N-bit result
→ n ≥ d2N/ℓe

• Constraint 3: n should be NTT-friendly
→ power of two or small multiple of power of two

• Constraint 4: Require NTT-friendly modulus
→ restrict to prime q1,q2
→ 2k | q1 − 1 and 2k | q2 − 1 to have the required principal roots of unity

• Constraint 5: Coefficients of polynomial product must not overflow q
→ q ≥ dN/ℓe · 22ℓ

31 August 2022 13/24

Institute of Information Science, Academia Sinica

Parameter Choices (2)

• Constraint 2: Need to be able to represent the 2N-bit result
→ n ≥ d2N/ℓe

• Constraint 3: n should be NTT-friendly
→ power of two or small multiple of power of two

• Constraint 4: Require NTT-friendly modulus
→ restrict to prime q1,q2
→ 2k | q1 − 1 and 2k | q2 − 1 to have the required principal roots of unity

• Constraint 5: Coefficients of polynomial product must not overflow q
→ q ≥ dN/ℓe · 22ℓ

31 August 2022 13/24

Institute of Information Science, Academia Sinica

Parameter Choices (3)

Cortex-M3

bits (N) chunking (ℓ) poly length (n) NTT modulus q = q1 · q2

2048 11 bits 384 128 = 27 12289 · 65537
4096 11 bits 768 256 = 28 25601 · 65537

Cortex-M55

bits (N) chunking (ℓ) poly length (n) NTT modulus q = q1 · q2

2048 22 bits 192 64 · 3 = 26 · 3 114 826 273 · 128 919 937
4096 22 bits 384 128 · 3 = 27 · 3 114 826 273 · 128 919 937

31 August 2022 14/24

Institute of Information Science, Academia Sinica

Low-level: Modular Coefficient Multiplication on Cortex-M3

NTT: Montgomery mult
mul a, a, b
mul t, a, −q−1 mod ±216
sxth t, t
mla a, t, q, a
asr a, a, #16

NTT: Barrett reductions
mul t, a, dR/qc
add t, t, #(R/2)
asr t, t, #log2 R
mls a, t, q, a

FNT: Reduction mod 65537
ubfx t, a, #0, #16
sub a, t, a, asr#16

31 August 2022 15/24

Institute of Information Science, Academia Sinica

Low-level: Modular Coefficient Multiplication on Cortex-M55

• We make use of “Barrett multiplication” from
Becker–Hwang–Kannwischer–Yang–Yang (CHES 2022)
https://tches.iacr.org/index.php/TCHES/article/view/9295

• Pre-compute: b′ =
bb232/qe

2

• Implement 4 parallel Barrett multiplications
vmul l, a, b
vqrdmulh h, a, b'
vmla l, h, q

31 August 2022 16/24

https://tches.iacr.org/index.php/TCHES/article/view/9295

Institute of Information Science, Academia Sinica

Application: RSA

• Integer multiplication is dominating operation within RSA
• Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p,q)
• Encryption:
c = me mod n (usually, e = 65537)
→ requires 4096-bit multiplication; e may leak via timing

• Decryption:
cd mod n = CRT(cd mod p, cd mod q)
→ requires 2048-bit multiplication; d must not leak via timing

• Fixed-window exponentiation for decryption
→ Use constant-time table look-up!

31 August 2022 17/24

Institute of Information Science, Academia Sinica

Application: RSA

• Integer multiplication is dominating operation within RSA
• Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p,q)
• Encryption:
c = me mod n (usually, e = 65537)
→ requires 4096-bit multiplication; e may leak via timing

• Decryption:
cd mod n = CRT(cd mod p, cd mod q)
→ requires 2048-bit multiplication; d must not leak via timing

• Fixed-window exponentiation for decryption
→ Use constant-time table look-up!

31 August 2022 17/24

Institute of Information Science, Academia Sinica

Application: RSA

• Integer multiplication is dominating operation within RSA
• Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p,q)
• Encryption:
c = me mod n (usually, e = 65537)
→ requires 4096-bit multiplication; e may leak via timing

• Decryption:
cd mod n = CRT(cd mod p, cd mod q)
→ requires 2048-bit multiplication; d must not leak via timing

• Fixed-window exponentiation for decryption
→ Use constant-time table look-up!

31 August 2022 17/24

Institute of Information Science, Academia Sinica

Application: RSA

• Integer multiplication is dominating operation within RSA
• Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p,q)
• Encryption:
c = me mod n (usually, e = 65537)
→ requires 4096-bit multiplication; e may leak via timing

• Decryption:
cd mod n = CRT(cd mod p, cd mod q)
→ requires 2048-bit multiplication; d must not leak via timing

• Fixed-window exponentiation for decryption
→ Use constant-time table look-up!

31 August 2022 17/24

Institute of Information Science, Academia Sinica

RSA: modmul

• Within expmod, we need a modmul

• Common way to implement modmul: Montgomery multiplication
c = a · b
t = c · p−1 mod R
r = (c− t · p)/R

• We can actually implement this using NTTs:
c = iNTT(NTT(a) ◦ NTT(b))
t = iNTT(NTT(c mod R) ◦ NTT(p−1 mod R))
r = (c− iNTT(NTT(t mod R) ◦ NTT(p)))/R

• We can pre-compute NTT(p) and NTT(p−1 mod R)
• Need 4× NTT and 3× iNTT
• Squaring: a = b → only 3× NTT

31 August 2022 18/24

Institute of Information Science, Academia Sinica

RSA: modmul

• Within expmod, we need a modmul

• Common way to implement modmul: Montgomery multiplication
c = a · b
t = c · p−1 mod R
r = (c− t · p)/R

• We can actually implement this using NTTs:
c = iNTT(NTT(a) ◦ NTT(b))
t = iNTT(NTT(c mod R) ◦ NTT(p−1 mod R))
r = (c− iNTT(NTT(t mod R) ◦ NTT(p)))/R

• We can pre-compute NTT(p) and NTT(p−1 mod R)
• Need 4× NTT and 3× iNTT
• Squaring: a = b → only 3× NTT

31 August 2022 18/24

Institute of Information Science, Academia Sinica

RSA: modmul

• Within expmod, we need a modmul

• Common way to implement modmul: Montgomery multiplication
c = a · b
t = c · p−1 mod R
r = (c− t · p)/R

• We can actually implement this using NTTs:
c = iNTT(NTT(a) ◦ NTT(b))
t = iNTT(NTT(c mod R) ◦ NTT(p−1 mod R))
r = (c− iNTT(NTT(t mod R) ◦ NTT(p)))/R

• We can pre-compute NTT(p) and NTT(p−1 mod R)
• Need 4× NTT and 3× iNTT
• Squaring: a = b → only 3× NTT

31 August 2022 18/24

Institute of Information Science, Academia Sinica

RSA: modmul

• Within expmod, we need a modmul

• Common way to implement modmul: Montgomery multiplication
c = a · b
t = c · p−1 mod R
r = (c− t · p)/R

• We can actually implement this using NTTs:
c = iNTT(NTT(a) ◦ NTT(b))
t = iNTT(NTT(c mod R) ◦ NTT(p−1 mod R))
r = (c− iNTT(NTT(t mod R) ◦ NTT(p)))/R

• We can pre-compute NTT(p) and NTT(p−1 mod R)
• Need 4× NTT and 3× iNTT
• Squaring: a = b → only 3× NTT

31 August 2022 18/24

Institute of Information Science, Academia Sinica

RSA: modmul

• Within expmod, we need a modmul

• Common way to implement modmul: Montgomery multiplication
c = a · b
t = c · p−1 mod R
r = (c− t · p)/R

• We can actually implement this using NTTs:
c = iNTT(NTT(a) ◦ NTT(b))
t = iNTT(NTT(c mod R) ◦ NTT(p−1 mod R))
r = (c− iNTT(NTT(t mod R) ◦ NTT(p)))/R

• We can pre-compute NTT(p) and NTT(p−1 mod R)
• Need 4× NTT and 3× iNTT
• Squaring: a = b → only 3× NTT

31 August 2022 18/24

Institute of Information Science, Academia Sinica

Results: Cortex-M3

n mulmod sqrmod expmodpublic expmodprivate

This work
2048

220047 196830 4227473 494923435
This work (FIOS) 234 041 – 4912705 543648872

BearSSL1 283038 – 18350210 718347177

This work
4096

510708 454128 9752690 2250748647
This work (FIOS) 926 523 – 19458326 4228661467

BearSSL1 1102151 – 70443207 5505856187

RSA-2048 using CRT for decryption

1https://bearssl.org/

31 August 2022 19/24

https://bearssl.org/

Institute of Information Science, Academia Sinica

Results: Cortex-M55

n mulmod sqrmod expmodpublic expmodprivate

This work

2048

21330 19701 389482 50085366
This work (FIOS) 20 260 – 426707 50683718

MbedTLS1 41443 – 884416 108441240
BearSSL2 83517 – 5400650 217123645

This work

4096

47660 43620 861450 218110707
This work (FIOS) 73 316 – 1540685 358080308

MbedTLS1 152371 – 3223797 755391521
BearSSL2 328801 – 21254533 16468̇34 048

RSA-2048 using CRT for decryption
1https://github.com/Mbed-TLS/mbedtls
2https://bearssl.org/

31 August 2022 20/24

https://github.com/Mbed-TLS/mbedtls
https://bearssl.org/

Institute of Information Science, Academia Sinica

Profiling of mulmod

36%

36%

18%

7%

3%

Cortex-M3, 2048 bits

40%

36%

15%

6%
3%

NTT

INTT

base

CRT

other

Cortex-M3, 4096 bits

36%

25%

24%

14%

1%

Cortex-M55, 2048 bits

39%

27%

21%

12%

1%

Cortex-M55, 4096 bits

31 August 2022 21/24

Institute of Information Science, Academia Sinica

Conclusions

• NTT-based integer multiplication can be superior for relatively small sizes
• We implemented 2048-bit and 4096-bit multiplications
• We target two common Arm platforms: Cortex-M3 and Cortex-M55

• Progress in post-quantum cryptography (lattice-based crypto) helps speeding up
pre-quantum crypto

• NTT are much easier to vectorize than other integer-multiplication algorithms
• Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

31 August 2022 22/24

Institute of Information Science, Academia Sinica

Conclusions

• NTT-based integer multiplication can be superior for relatively small sizes
• We implemented 2048-bit and 4096-bit multiplications
• We target two common Arm platforms: Cortex-M3 and Cortex-M55

• Progress in post-quantum cryptography (lattice-based crypto) helps speeding up
pre-quantum crypto

• NTT are much easier to vectorize than other integer-multiplication algorithms
• Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

31 August 2022 22/24

Institute of Information Science, Academia Sinica

Conclusions

• NTT-based integer multiplication can be superior for relatively small sizes
• We implemented 2048-bit and 4096-bit multiplications
• We target two common Arm platforms: Cortex-M3 and Cortex-M55

• Progress in post-quantum cryptography (lattice-based crypto) helps speeding up
pre-quantum crypto

• NTT are much easier to vectorize than other integer-multiplication algorithms
• Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

31 August 2022 22/24

Institute of Information Science, Academia Sinica

Conclusions: Limitations

• Limited to certain integer sizes
• Limited to chosen platforms (Cortex-M3, Cortex-M55)
• Our code is heavily unrolled

• May be problematic on the Cortex-M3 due to ROM/flash constraints
• Performance overhead of re-rolling the code is hopefully small

• expmod allows some pre-computation (modulus and its inverse in NTT domain)
favouring NTT-based multiplication

• General-purpose modular multiplication will be slower

31 August 2022 23/24

Institute of Information Science, Academia Sinica

Conclusions: Limitations

• Limited to certain integer sizes
• Limited to chosen platforms (Cortex-M3, Cortex-M55)
• Our code is heavily unrolled

• May be problematic on the Cortex-M3 due to ROM/flash constraints
• Performance overhead of re-rolling the code is hopefully small

• expmod allows some pre-computation (modulus and its inverse in NTT domain)
favouring NTT-based multiplication

• General-purpose modular multiplication will be slower

31 August 2022 23/24

Institute of Information Science, Academia Sinica

Conclusions: Limitations

• Limited to certain integer sizes
• Limited to chosen platforms (Cortex-M3, Cortex-M55)
• Our code is heavily unrolled

• May be problematic on the Cortex-M3 due to ROM/flash constraints
• Performance overhead of re-rolling the code is hopefully small

• expmod allows some pre-computation (modulus and its inverse in NTT domain)
favouring NTT-based multiplication

• General-purpose modular multiplication will be slower

31 August 2022 23/24

Institute of Information Science, Academia Sinica

Conclusions: Limitations

• How does this translate to other platforms?
• Unclear
• For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle

umaal) that help schoolbook much more than NTTs
• Armv8-A/Armv9-A processors would be interesting to look at in the future

• Can we scale this to any size of integers (≥ 2048)?
• Unclear
• Parameters have been carefully picked for the two sizes (2048, 4096)
• General-purpose integer multiplication code is trickier!

31 August 2022 24/24

Institute of Information Science, Academia Sinica

Conclusions: Limitations

• How does this translate to other platforms?
• Unclear
• For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle

umaal) that help schoolbook much more than NTTs
• Armv8-A/Armv9-A processors would be interesting to look at in the future

• Can we scale this to any size of integers (≥ 2048)?
• Unclear
• Parameters have been carefully picked for the two sizes (2048, 4096)
• General-purpose integer multiplication code is trickier!

31 August 2022 24/24

Institute of Information Science, Academia Sinica

Thanks!

https://eprint.iacr.org/2022/439
https://github.com/ntt-int-mul/ntt-int-mul-m3
https://gitlab.com/arm-research/security/pqmx

31 August 2022

https://eprint.iacr.org/2022/439
https://github.com/ntt-int-mul/ntt-int-mul-m3
https://gitlab.com/arm-research/security/pqmx

	Appendix

