

Efficient Multiplication of Somewhat Small Integers using Number-Theoretic Transforms

Hanno Becker Vincent Hwang <u>Matthias J. Kannwischer</u> Lorenz Panny Bo-Yin Yang

31 August 2022, IWSEC 2022, Tokyo, Japan [online]

<u>Task</u>: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

<u>Task</u>: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

<u>Task:</u> Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

• ℓ -bit chunking: Write $a = \sum_{i=0}^{n} (2^{\ell})^{i} a_{i}$ and replace 2^{ℓ} by x, giving $f_{a} = \sum a_{i} x^{i} \in \mathbb{Z}[x]$.

<u>Task:</u> Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a = \sum_{i=0}^{n} (2^{\ell})^{i} a_{i}$ and replace 2^{ℓ} by x, giving $f_{a} = \sum a_{i} x^{i} \in \mathbb{Z}[x]$.
- polynomial multiplication: Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.

<u>Task:</u> Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a = \sum_{i=0}^{n} (2^{\ell})^{i} a_{i}$ and replace 2^{ℓ} by x, giving $f_{a} = \sum a_{i} x^{i} \in \mathbb{Z}[x]$.
- polynomial multiplication: Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.
- "dechunking": Replace x in f_c by 2^{ℓ} . (In other words, evaluate f_c at 2^{ℓ} .)

<u>Task:</u> Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a = \sum_{i=0}^{n} (2^{\ell})^{i} a_{i}$ and replace 2^{ℓ} by x, giving $f_{a} = \sum a_{i} x^{i} \in \mathbb{Z}[x]$.
- polynomial multiplication: Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.
- "dechunking": Replace x in f_c by 2^{ℓ} . (In other words, evaluate f_c at 2^{ℓ} .)

Correctness: The map $x \mapsto 2^{\ell}$ is a ring homomorphism.

1/24

<u>Task:</u> Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a = \sum_{i=0}^{n} (2^{\ell})^{i} a_{i}$ and replace 2^{ℓ} by x, giving $f_{a} = \sum a_{i} x^{i} \in \mathbb{Z}[x]$.
- polynomial multiplication: Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.
- "dechunking": Replace x in f_c by 2^{ℓ} . (In other words, evaluate f_c at 2^{ℓ} .)

Correctness: The map $x \mapsto 2^{\ell}$ is a ring homomorphism.

(The reverse reduction works as well, using *Kronecker substitution*: Given $f, g \in \mathbb{Z}[x]$, choose large 2^{ℓ} , compute $c = f(2^{\ell}) \cdot g(2^{\ell})$, and recover $f \cdot g$ from c via ℓ -bit chunking.)

<u>Observation</u>: Multiplication in product rings $R_1 \times \cdots \times R_n$ is component-wise $\implies O(n)!$

<u>Observation</u>: Multiplication in product rings $R_1 \times \cdots \times R_n$ is component-wise $\implies O(n)!$ <u>Chinese Remainder Theorem (CRT)</u>: If gcd(f,g) = 1, then $R[x]/(f \cdot g) \cong R[x]/f \times R[x]/g$.

<u>Observation</u>: Multiplication in product rings $R_1 \times \cdots \times R_n$ is component-wise $\implies O(n)!$ <u>Chinese Remainder Theorem (CRT)</u>: If gcd(f,g) = 1, then $R[x]/(f \cdot g) \cong R[x]/f \times R[x]/g$. <u>Fourier transform</u> computes $R[x]/(x^n - 1) \xrightarrow{\sim} \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$.

2/24

<u>Observation</u>: Multiplication in product rings $R_1 \times \cdots \times R_n$ is component-wise $\implies O(n)!$ <u>Chinese Remainder Theorem (CRT)</u>: If gcd(f, g) = 1, then $R[x]/(f \cdot g) \cong R[x]/f \times R[x]/g$. <u>Fourier transform</u> computes $R[x]/(x^n - 1) \xrightarrow{\sim} \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a principal n^{th} root of unity. Over \mathbb{C} , can use $\omega_n = \exp(2\pi i/n)$.)

<u>Observation</u>: Multiplication in product rings $R_1 \times \cdots \times R_n$ is component-wise $\implies O(n)!$ <u>Chinese Remainder Theorem (CRT)</u>: If gcd(f,g) = 1, then $R[x]/(f \cdot g) \cong R[x]/f \times R[x]/g$. <u>Fourier transform</u> computes $R[x]/(x^n - 1) \xrightarrow{\sim} \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a principal n^{th} root of unity. Over \mathbb{C} , can use $\omega_n = \exp(2\pi i/n)$.)

<u>Fast Fourier transform</u> takes time only $O(n \log n)!$

<u>Observation</u>: Multiplication in product rings $R_1 \times \cdots \times R_n$ is component-wise $\implies O(n)!$ <u>Chinese Remainder Theorem (CRT)</u>: If gcd(f,g) = 1, then $R[x]/(f \cdot g) \cong R[x]/f \times R[x]/g$. <u>Fourier transform</u> computes $R[x]/(x^n - 1) \xrightarrow{\sim} \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a principal n^{th} root of unity. Over \mathbb{C} , can use $\omega_n = \exp(2\pi i/n)$.)

<u>Fast Fourier transform</u> takes time only $O(n \log n)$! Essential trick: remainder tree.

<u>Observation</u>: Multiplication in product rings $R_1 \times \cdots \times R_n$ is component-wise $\implies O(n)!$ <u>Chinese Remainder Theorem (CRT)</u>: If gcd(f,g) = 1, then $R[x]/(f \cdot g) \cong R[x]/f \times R[x]/g$. <u>Fourier transform</u> computes $R[x]/(x^n - 1) \xrightarrow{\sim} \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a principal n^{th} root of unity. Over \mathbb{C} , can use $\omega_n = \exp(2\pi i/n)$.)

<u>Fast Fourier transform</u> takes time only $O(n \log n)$! Essential trick: remainder tree.

 \implies [FFT + pointwise multiplication + inverse FFT] is only $O(n \log n)$ operations in R.

FFT tree for $R[x]/(x^{2^m} - 1)$

Institute of Information Science, Academia Sinica

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

• Input: $c_0 + c_1 x + \ldots + c_{2k-1} x^{2k-1}$.

4/24

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: $c_0 + c_1 x + \ldots + c_{2k-1} x^{2k-1}$.
- x^i -coefficient of "left" output is $(c_i + \tau c_{k+i})$.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: $c_0 + c_1 x + ... + c_{2k-1} x^{2k-1}$.
- x^i -coefficient of "left" output is $(c_i + \tau c_{k+i})$.
- x^i -coefficient of "right" output is $(c_i \tau c_{k+i})$.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: $c_0 + c_1 x + ... + c_{2k-1} x^{2k-1}$.
- x^i -coefficient of "left" output is $(c_i + \tau c_{k+i})$.
- x^i -coefficient of "right" output is $(c_i \tau c_{k+i})$.

Going <u>up</u> one layer: Compute the inverse map.

4/24

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: $c_0 + c_1 x + ... + c_{2k-1} x^{2k-1}$.
- x^i -coefficient of "left" output is $(c_i + \tau c_{k+i})$.
- x^i -coefficient of "right" output is $(c_i \tau c_{k+i})$.

Going <u>up</u> one layer: Compute the inverse map.

• For each *i*, have $d_i = c_i + \tau c_{k+i}$ and $e_i = c_i - \tau c_{k+i}$; want (c_i, c_{k+i}) .

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: $c_0 + c_1 x + ... + c_{2k-1} x^{2k-1}$.
- x^i -coefficient of "left" output is $(c_i + \tau c_{k+i})$.
- x^i -coefficient of "right" output is $(c_i \tau c_{k+i})$.

Going <u>up</u> one layer: Compute the inverse map.

- For each *i*, have $d_i = c_i + \tau c_{k+i}$ and $e_i = c_i \tau c_{k+i}$; want (c_i, c_{k+i}) .
- Linear algebra $\rightsquigarrow c_i = (d_i + e_i)/2$ and $c_{k+i} = \tau^{-1}(d_i e_i)/2$.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: $c_0 + c_1 x + ... + c_{2k-1} x^{2k-1}$.
- x^i -coefficient of "left" output is $(c_i + \tau c_{k+i})$.
- x^i -coefficient of "right" output is $(c_i \tau c_{k+i})$.

Going <u>up</u> one layer: Compute the inverse map.

- For each *i*, have $d_i = c_i + \tau c_{k+i}$ and $e_i = c_i \tau c_{k+i}$; want (c_i, c_{k+i}) .
- Linear algebra $\rightsquigarrow c_i = (d_i + e_i)/2$ and $c_{k+i} = \tau^{-1}(d_i e_i)/2$.

 \implies Work per layer is O(n), and there are $O(\log n)$ layers. $\implies O(n \log n)$.

Butterflies

31 August 2022

Institute of Information Science, Academia Sinica

5/24

Butterflies

Cooley–Tukey butterfly

Reduce
$$f = c_0 + c_1 x + ... + c_{2k-1} c^{2k-1}$$

modulo $(x^k - \tau)$ and $(x^k + \tau)$.

31 August 2022

Butterflies

Cooley–Tukey butterfly

Gentleman-Sande butterfly

Reduce
$$f = c_0 + c_1 x + ... + c_{2k-1} c^{2k-1}$$

modulo $(x^k - \tau)$ and $(x^k + \tau)$.

 $\begin{aligned} & \text{Recover 2} \cdot f \in R[x]/(x^{2k}-\tau^2) \\ & \text{from } \big(f \text{ mod } (x^k-\tau), f \text{ mod } (x^k+\tau) \big). \end{aligned}$

Institute of Information Science, Academia Sinica

<u>Number-Theoretic Transform</u> is a Fourier transform over a *finite* ring (typically \mathbb{F}_q). Much more convenient for computers than, say, working over \mathbb{C} .

<u>Number-Theoretic Transform</u> is a Fourier transform over a *finite* ring (typically \mathbb{F}_q). Much more convenient for computers than, say, working over \mathbb{C} .

• Multiplications in $\mathbb{Z}[x]$ can be emulated by choosing q large enough.

<u>Number-Theoretic Transform</u> is a Fourier transform over a *finite* ring (typically \mathbb{F}_q). Much more convenient for computers than, say, working over \mathbb{C} .

• Multiplications in $\mathbb{Z}[x]$ can be emulated by choosing q large enough.

We require an n^{th} principal root of unity. For \mathbb{F}_q , this means $n \mid (q - 1)$.

<u>Number-Theoretic Transform</u> is a Fourier transform over a *finite* ring (typically \mathbb{F}_q). Much more convenient for computers than, say, working over \mathbb{C} .

• Multiplications in $\mathbb{Z}[x]$ can be emulated by choosing q large enough.

We require an n^{th} principal root of unity. For \mathbb{F}_q , this means $n \mid (q-1)$.

• If ω_n doesn't exist but $\omega_{n/d}$ does, can do incomplete NTT: $x^n - 1 = \prod_{i=0}^{n/d-1} (x^d - \omega_{n/d}^i)$. Base multiplication will be on degree-d polynomials instead of base-ring elements.

<u>Number-Theoretic Transform</u> is a Fourier transform over a *finite* ring (typically \mathbb{F}_q). Much more convenient for computers than, say, working over \mathbb{C} .

• Multiplications in $\mathbb{Z}[x]$ can be emulated by choosing q large enough.

We require an n^{th} principal root of unity. For \mathbb{F}_q , this means $n \mid (q-1)$.

• If ω_n doesn't exist but $\omega_{n/d}$ does, can do incomplete NTT: $x^n - 1 = \prod_{i=0}^{n/d-1} (x^d - \omega_{n/d}^i)$. Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that *R* doesn't have to be a field: Another useful choice is \mathbb{Z}/q with $q = q_1q_2$.

<u>Number-Theoretic Transform</u> is a Fourier transform over a *finite* ring (typically \mathbb{F}_q). Much more convenient for computers than, say, working over \mathbb{C} .

• Multiplications in $\mathbb{Z}[x]$ can be emulated by choosing q large enough.

We require an n^{th} principal root of unity. For \mathbb{F}_q , this means $n \mid (q-1)$.

• If ω_n doesn't exist but $\omega_{n/d}$ does, can do incomplete NTT: $x^n - 1 = \prod_{i=0}^{n/d-1} (x^d - \omega_{n/d}^i)$. Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that *R* doesn't have to be a field: Another useful choice is \mathbb{Z}/q with $q = q_1q_2$.

• Compute NTT modulo q_1 and q_2 separately, recombine via CRT $\mathbb{F}_{q_1} \times \mathbb{F}_{q_2} \xrightarrow{\sim} \mathbb{Z}/q$.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication recursively to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible. \implies Chop into \leq word-sized coefficients; use longer NTT if needed.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

- \implies Chop into \leq word-sized coefficients; use longer NTT if needed.
- \implies Use \leq word-sized moduli q_i suitable for fast reductions.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

- \implies Chop into \leq word-sized coefficients; use longer NTT if needed.
- \implies Use \leq word-sized moduli q_i suitable for fast reductions.

Our algorithm isn't even properly specified for arbitrary lengths. If it were, it would scale worse than Schönhage–Strassen. Still, it appears to be *faster for medium-sized integers*!

• Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.
- Comparison to existing cryptographic software and other, less sophisticated integer-multiplication algorithms.

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.
- Comparison to existing cryptographic software and other, less sophisticated integer-multiplication algorithms.

Conclusion: NTTs can compete - even win! - for integers around a few thousand bits.

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.
- Comparison to existing cryptographic software and other, less sophisticated integer-multiplication algorithms.

Conclusion: NTTs can compete - even win! - for integers around a few thousand bits.

Compare <u>conventional wisdom</u>:

"[Schönhage–Strassen] starts to outperform [...] for numbers beyond 2²¹⁵ to 2²¹⁷." (Wikipedia)

Target Architectures

- Focus on 32-bit Arm microcontrollers
- First target: Arm Cortex-M3
 - Announced in 2004
 - Implements Armv7-M
 - Interesting/dangerous feature: Timing of long multiplications (e.g., UMULL) is input-dependent
 → Avoid for constant-time code
 - We make use of STM32 Nucleo-F207ZG with the STM32F207ZG
 - \$20

Target Architectures

- Focus on 32-bit Arm microcontrollers
- First target: Arm Cortex-M3
 - Announced in 2004
 - Implements Armv7-M
 - Interesting/dangerous feature: Timing of long multiplications (e.g., UMULL) is input-dependent
 → Avoid for constant-time code
 - We make use of STM32 Nucleo-F207ZG with the STM32F207ZG
 - \$20

Target Architectures

- Focus on 32-bit Arm microcontrollers
- First target: Arm Cortex-M3
 - Announced in 2004
 - Implements Armv7-M
 - Interesting/dangerous feature: Timing of long multiplications (e.g., UMULL) is input-dependent
 → Avoid for constant-time code
 - We make use of STM32 Nucleo-F207ZG with the STM32F207ZG
 - \$20

Target Architectures (2)

- Second target: Arm Cortex-M55
 - Announced in 2020
 - Implements Armv8-M
 - First core to implement the M-profile vector extension (MVE) a.k.a. Helium
 - No development boards available as of now
 - We use an FPGA prototyping board (Arm MPS3) with the AN552 model
 - \$1500

Target Architectures (2)

- Second target: Arm Cortex-M55
 - Announced in 2020
 - Implements Armv8-M
 - First core to implement the M-profile vector extension (MVE) a.k.a. Helium
 - No development boards available as of now
 - We use an FPGA prototyping board (Arm MPS3) with the AN552 model
 - \$1500

Fermat Number Transforms (FNT)

- <u>Recall</u>: For NTTs we require $2^k | q 1$ with prime q
- Fermat numbers: $2^{2^k} + 1$
- Fermat primes: 3, 5, 17, 257, 65537
- Example: 65537
 - $\omega_2 = -1 = 2^{10}$
 - $\omega_4 = 2^8$
 - $\omega_8 = 2^4$
 - $\omega_{16} = 2^2$
 - $\omega_{32} = 2^1$
- First 5 layers of the FFT have multiplications by powers of two
 - ightarrow Can use shifts instead of multiplications
 - ightarrow Particularly useful on the Cortex-M3!

Fermat Number Transforms (FNT)

- <u>Recall</u>: For NTTs we require $2^k \mid q 1$ with prime q
- Fermat numbers: $2^{2^k} + 1$
- Fermat primes: 3, 5, 17, 257, 65537
- Example: 65537
 - $\omega_2 = -1 = 2^{16}$
 - $\omega_4 = 2^8$
 - $\omega_8 = 2^4$
 - $\omega_{16} = 2^2$
 - $\omega_{32} = 2^1$
- First 5 layers of the FFT have multiplications by powers of two
 - ightarrow Can use shifts instead of multiplications
 - ightarrow Particularly useful on the Cortex-M3!

Fermat Number Transforms (FNT)

- <u>Recall</u>: For NTTs we require $2^k \mid q 1$ with prime q
- Fermat numbers: $2^{2^k} + 1$
- Fermat primes: 3, 5, 17, 257, 65537
- Example: 65537
 - $\omega_2 = -1 = 2^{16}$
 - $\omega_4 = 2^8$
 - $\omega_8 = 2^4$
 - $\omega_{16} = 2^2$
 - $\omega_{32} = 2^1$
- First 5 layers of the FFT have multiplications by powers of two
 - \rightarrow Can use shifts instead of multiplications
 - ightarrow Particularly useful on the Cortex-M3!

Parameter Choices

- High-level goal: Efficient N-bit (2048, 4096) multiplication
 - Chunk up number in ℓ -bit coefficients
 - Pad with zeros to have an *n*-coefficient polynomial
 - Each coefficient is modulo small $q = q_1 q_2$
 - Perform a k-layer NTT-based multiplication
- Constraint 1: We want to make efficient use of the available multipliers
 - M3:
 - mul 32 imes 32 ightarrow 32 bit (low multiplication)
 - ightarrow want to limit moduli q_i to 16 bit
 - \rightarrow special case: FNT with $q_2 = 65537$ for NTT
 - M55:
 - <code>vmul 32 imes 32 ightarrow 32 bit (low multiplication)</code>
 - <code>vqrdmulh: 32 \times 32 \rightarrow 32 bit (rounding doubling high multiplication)</code>
 - \rightarrow want to limit moduli q_i to 32 bit

Parameter Choices

- High-level goal: Efficient N-bit (2048, 4096) multiplication
 - Chunk up number in ℓ -bit coefficients
 - Pad with zeros to have an *n*-coefficient polynomial
 - Each coefficient is modulo small $q = q_1 q_2$
 - Perform a k-layer NTT-based multiplication
- Constraint 1: We want to make efficient use of the available multipliers
 - M3:

```
mul 32 	imes 32 
ightarrow 32 bit (low multiplication)
```

- ightarrow want to limit moduli q_i to 16 bit
- ightarrow special case: FNT with $q_2=65537$ for NTT
- M55:

```
<code>vmul 32 \times 32 \rightarrow 32 bit (low multiplication)</code>
```

- <code>vqrdmulh: 32 \times 32 \rightarrow 32 bit (rounding doubling high multiplication)</code>
- \rightarrow want to limit moduli q_i to 32 bit

- Constraint 2: Need to be able to represent the 2N-bit result $\rightarrow n \geq \lceil 2N/\ell \rceil$

- Constraint 3: *n* should be NTT-friendly
 - ightarrow power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus
 - \rightarrow restrict to prime q_1, q_2

ightarrow 2 k | q_1 - 1 and 2 k | q_2 - 1 to have the required principal roots of unity

- Constraint 5: Coefficients of polynomial product must not overflow q $\rightarrow q \geq \lceil N/\ell \rceil \cdot 2^{2\ell}$

- Constraint 2: Need to be able to represent the 2N-bit result $\rightarrow n \geq \lceil 2N/\ell \rceil$
- Constraint 3: *n* should be NTT-friendly \rightarrow power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus
 - \rightarrow restrict to prime q_1, q_2
 - $ightarrow 2^k \mid q_1 1$ and $2^k \mid q_2 1$ to have the required principal roots of unity
- Constraint 5: Coefficients of polynomial product must not overflow q $\rightarrow q \geq \lceil N/\ell \rceil \cdot 2^{2\ell}$

- Constraint 2: Need to be able to represent the 2N-bit result $\rightarrow n \geq \lceil 2N/\ell \rceil$
- Constraint 3: *n* should be NTT-friendly
 - \rightarrow power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus
 - ightarrow restrict to prime q_1, q_2

ightarrow 2^k | q_1 – 1 and 2^k | q_2 – 1 to have the required principal roots of unity

- Constraint 5: Coefficients of polynomial product must not overflow $q \rightarrow q \geq \lceil N/\ell \rceil \cdot 2^{2\ell}$

- Constraint 2: Need to be able to represent the 2N-bit result $\rightarrow n \geq \lceil 2N/\ell \rceil$
- Constraint 3: *n* should be NTT-friendly
 - \rightarrow power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus
 - ightarrow restrict to prime q_1, q_2
 - $ightarrow 2^k \mid q_1 1$ and $2^k \mid q_2 1$ to have the required principal roots of unity
- Constraint 5: Coefficients of polynomial product must not overflow q $o q \geq \lceil N/\ell \rceil \cdot 2^{2\ell}$

Cortex-M3									
bits (N)	chunking (ℓ)	poly length (n)	NTT	modulus $q = q_1 \cdot q_2$					
2048 4096	11 bits 11 bits	384 768	$128 = 2^7$ $256 = 2^8$	12289 · 65537 25601 · 65537					
Cortex-M55									
bits (N) $ $ chunking (ℓ) $ $ poly length (n) $ $ NTT $ $ modulus $q =$									
2048 4096	22 bits 22 bits	192 384	$64 \cdot 3 = 2^6 \cdot 3$ $128 \cdot 3 = 2^7 \cdot 3$	114 826 273 · 128 919 937 114 826 273 · 128 919 937					

Low-level: Modular Coefficient Multiplication on Cortex-M3

<u>NTT: Montgomery mult</u> mul a, a, b mul t, a, $-q^{-1} \mod \pm 2^{16}$ sxth t, t mla a, t, q, a asr a, a, #16

<u>NTT: Barrett reductions</u> mul t, a, $\lceil R/q \rfloor$

add t, t, #(R/2)asr t, t, $\#\log_2 R$ mls a, t, q, a FNT: Reduction mod 65537
ubfx t, a, #0, #16
sub a, t, a, asr#16

Low-level: Modular Coefficient Multiplication on Cortex-M55

- We make use of "Barrett multiplication" from Becker-Hwang-Kannwischer-Yang-Yang (CHES 2022) https://tches.iacr.org/index.php/TCHES/article/view/9295
- Pre-compute: $b' = \frac{\lfloor b2^{32}/q \rceil}{2}$
- Implement 4 parallel Barrett multiplications
 vmul 1, a, b
 - vqrdmulh h, a, b'

```
vmla l, h, q
```


- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)
- Encryption:
 - $c = m^e \mod n$ (usually, e = 65537)
 - ightarrow requires 4096-bit multiplication; e may leak via timing
- <u>Decryption</u>:
 - $c^d \mod n = CRT(c^d \mod p, c^d \mod q)$
 - ightarrow requires 2048-bit multiplication; d must not leak via timing
- Fixed-window exponentiation for decryption
 - ightarrow Use constant-time table look-up!

- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)
- Encryption:
 - $c = m^e \mod n$ (usually, e = 65537)
 - ightarrow requires 4096-bit multiplication; e may leak via timing
- <u>Decryption</u>:
 - $c^d \mod n = CRT(c^d \mod p, c^d \mod q)$
 - ightarrow requires 2048-bit multiplication; d must not leak via timing
- Fixed-window exponentiation for decryption
 - ightarrow Use constant-time table look-up!

- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)
- Encryption:
 - $c = m^e \mod n$ (usually, e = 65537)

ightarrow requires 4096-bit multiplication; e may leak via timing

• <u>Decryption</u>:

 $c^d \mod n = CRT(c^d \mod p, c^d \mod q)$

- ightarrow requires 2048-bit multiplication; *d* must not leak via timing
- Fixed-window exponentiation for decryption
 - ightarrow Use constant-time table look-up!

- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)
- Encryption:
 - $c = m^e \mod n$ (usually, e = 65537)

ightarrow requires 4096-bit multiplication; e may leak via timing

• <u>Decryption</u>:

 $c^d \mod n = CRT(c^d \mod p, c^d \mod q)$

- ightarrow requires 2048-bit multiplication; *d* must not leak via timing
- Fixed-window exponentiation for decryption
 - ightarrow Use constant-time table look-up!

• Within expmod, we need a modmul

- Common way to implement modmul: Montgomery multiplication $c = a \cdot b$
 - $t = c \cdot p^{-1} \mod R$
 - $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
 - $c = iNTT(NTT(a) \circ NTT(b))$
 - $t = iNTT(NTT(c \mod R) \circ NTT(p^{-1} \mod R))$
 - $r = (c iNTT(NTT(t \mod R) \circ NTT(p)))/R$
- We can pre-compute NTT(p) and $NTT(p^{-1} \mod R)$
- Need 4× NTT and 3× iNTT
- Squaring: $a = b \rightarrow \text{only } 3 \times \text{NTT}$

- Within expmod, we need a modmul
- Common way to implement modmul: Montgomery multiplication
 - $c = a \cdot b$
 - $t = c \cdot p^{-1} \mod R$
 - $r = (c t \cdot p)/R$
- We can actually implement this using NTTs
 - $c = iNTT(NTT(a) \circ NTT(b))$
 - $t = iNTT(NTT(c \mod R) \circ NTT(p^{-1} \mod R))$
 - $r = (c iNTT(NTT(t \mod R) \circ NTT(p)))/R$
- We can pre-compute NTT(p) and $NTT(p^{-1} \mod R)$
- Need 4 \times NTT and 3 \times iNTT
- Squaring: a = b
 ightarrow only 3imes NTT

- Within expmod, we need a modmul
- + Common way to implement modmul: Montgomery multiplication
 - $c = a \cdot b$
 - $t = c \cdot p^{-1} \mod R$
 - $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
 - $c = iNTT(NTT(a) \circ NTT(b))$
 - $t = iNTT(NTT(c \bmod R) \circ NTT(p^{-1} \bmod R))$
 - $r = (c iNTT(NTT(t \text{ mod } R) \circ NTT(p)))/R$
- We can pre-compute NTT(p) and $NTT(p^{-1} \mod R)$
- Need 4imes NTT and 3imes iNTT
- Squaring: a = b
 ightarrow only 3imes NTT

- Within expmod, we need a modmul
- Common way to implement modmul: Montgomery multiplication
 - $c = a \cdot b$
 - $t = c \cdot p^{-1} \mod R$
 - $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
 - $c = iNTT(NTT(a) \circ NTT(b))$
 - $t = iNTT(NTT(c \bmod R) \circ NTT(p^{-1} \bmod R))$
 - $r = (c iNTT(NTT(t \text{ mod } R) \circ NTT(p)))/R$
- We can pre-compute NTT(p) and $NTT(p^{-1} \mod R)$
- Need 4 \times NTT and 3 \times iNTT
- Squaring: a = b
 ightarrow only 3imes NTT

- Within expmod, we need a modmul
- Common way to implement modmul: Montgomery multiplication
 - $c = a \cdot b$
 - $t = c \cdot p^{-1} \mod R$
 - $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
 - $c = iNTT(NTT(a) \circ NTT(b))$
 - $t = iNTT(NTT(c \bmod R) \circ NTT(p^{-1} \bmod R))$
 - $r = (c iNTT(NTT(t \text{ mod } R) \circ NTT(p)))/R$
- We can pre-compute NTT(p) and $NTT(p^{-1} \mod R)$
- + Need 4 \times NTT and 3 \times iNTT
- Squaring: $a = b \rightarrow \text{only } 3 \times \text{NTT}$

Results: Cortex-M3

	n	mulmod	sqrmod	expmod _{public}	expmod _{private}
This work	2048	220 047	196830	4 227 473	494 923 435
This work (FIOS)		234041	-	4 912 705	543 648 872
BearSSL ¹		283 038	-	18350210	718 347 177
This work	4096	510 708	454 128	9 752 690	2 250 748 647
This work (FIOS)		926 523	-	19 458 326	4 228 661 467
BearSSL ¹		1 102 151	_	70 443 207	5 505 856 187

RSA-2048 using CRT for decryption

¹https://bearssl.org/

31 August 2022

Results: Cortex-M55

	n	mulmod	sqrmod	expmod _{public}	expmod _{private}
This work	2048	21330	19701	389 482	50 085 366
This work (FIOS)		20260	-	426 707	50 683 718
MbedTLS ¹		41443	-	884 416	108 441 240
BearSSL ²		83 517	-	5 400 650	217 123 645
This work	4096	47 660	43 620	861450	218 110 707
This work (FIOS)		73316	-	1 540 685	358 080 308
MbedTLS ¹		152 371	-	3 223 797	755 391 521
BearSSL ²		328801	-	21 254 533	1646834048

RSA-2048 using CRT for decryption

¹https://github.com/Mbed-TLS/mbedtls

²https://bearssl.org/

Profiling of mulmod

Institute of Information Science, Academia Sinica

Conclusions

- NTT-based integer multiplication can be superior for relatively small sizes
 - We implemented 2048-bit and 4096-bit multiplications
 - We target two common Arm platforms: Cortex-M3 and Cortex-M55
- Progress in post-quantum cryptography (lattice-based crypto) helps speeding up pre-quantum crypto
- NTT are much easier to vectorize than other integer-multiplication algorithms
 - Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

Conclusions

- NTT-based integer multiplication can be superior for relatively small sizes
 - We implemented 2048-bit and 4096-bit multiplications
 - We target two common Arm platforms: Cortex-M3 and Cortex-M55
- Progress in post-quantum cryptography (lattice-based crypto) helps speeding up pre-quantum crypto
- NTT are much easier to vectorize than other integer-multiplication algorithms
 - Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

Conclusions

- NTT-based integer multiplication can be superior for relatively small sizes
 - We implemented 2048-bit and 4096-bit multiplications
 - We target two common Arm platforms: Cortex-M3 and Cortex-M55
- Progress in post-quantum cryptography (lattice-based crypto) helps speeding up pre-quantum crypto
- NTT are much easier to vectorize than other integer-multiplication algorithms
 - Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

- Limited to certain integer sizes
- Limited to chosen platforms (Cortex-M3, Cortex-M55)
- Our code is heavily unrolled
 - May be problematic on the Cortex-M3 due to ROM/flash constraints
 - Performance overhead of re-rolling the code is hopefully small
- expmod allows some pre-computation (modulus and its inverse in NTT domain) favouring NTT-based multiplication
 - General-purpose modular multiplication will be slower

- Limited to certain integer sizes
- Limited to chosen platforms (Cortex-M3, Cortex-M55)
- Our code is heavily unrolled
 - May be problematic on the Cortex-M3 due to ROM/flash constraints
 - Performance overhead of re-rolling the code is hopefully small
- expmod allows some pre-computation (modulus and its inverse in NTT domain) favouring NTT-based multiplication
 - General-purpose modular multiplication will be slower

- Limited to certain integer sizes
- Limited to chosen platforms (Cortex-M3, Cortex-M55)
- Our code is heavily unrolled
 - May be problematic on the Cortex-M3 due to ROM/flash constraints
 - Performance overhead of re-rolling the code is hopefully small
- expmod allows some pre-computation (modulus and its inverse in NTT domain) favouring NTT-based multiplication
 - General-purpose modular multiplication will be slower

- How does this translate to other platforms?
 - Unclear
 - For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle umaal) that help schoolbook much more than NTTs
 - Armv8-A/Armv9-A processors would be interesting to look at in the future
- Can we scale this to any size of integers (\geq 2048)?
 - Unclear
 - Parameters have been carefully picked for the two sizes (2048, 4096)
 - General-purpose integer multiplication code is trickier!

- How does this translate to other platforms?
 - Unclear
 - For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle umaal) that help schoolbook much more than NTTs
 - Armv8-A/Armv9-A processors would be interesting to look at in the future
- Can we scale this to any size of integers (\geq 2048)?
 - Unclear
 - Parameters have been carefully picked for the two sizes (2048, 4096)
 - General-purpose integer multiplication code is trickier!

Thanks!

https://eprint.iacr.org/2022/439 https://github.com/ntt-int-mul/ntt-int-mul-m3 https://gitlab.com/arm-research/security/pqmx

Institute of Information Science, Academia Sinica

31 August 2022