

Efficient Multiplication of Somewhat Small Integers using Number-Theoretic Transforms

Hanno Becker Vincent Hwang Matthias J. Kannwischer Lorenz Panny Bo-Yin Yang

31 August 2022, IWSEC 2022, Tokyo, Japan [online]

Task: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Task: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

Task: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

• ℓ -bit chunking: Write $a=\sum_{i=0}^n(2^\ell)^ia_i$ and replace 2^ℓ by x, giving $f_a=\sum a_i x^i\in\mathbb{Z}[\mathsf{x}].$

Task: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a=\sum_{i=0}^n(2^\ell)^ia_i$ and replace 2^ℓ by x, giving $f_a=\sum a_i x^i\in\mathbb{Z}[\mathsf{x}].$
- *polynomial multiplication:* Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.

Task: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a=\sum_{i=0}^n(2^\ell)^ia_i$ and replace 2^ℓ by x, giving $f_a=\sum a_i x^i\in\mathbb{Z}[\mathsf{x}].$
- *polynomial multiplication:* Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.
- *"dechunking":* Replace *x* in *f^c* by 2*^ℓ* . (In other words, *evaluate f^c* at 2*^ℓ* .)

Task: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a=\sum_{i=0}^n(2^\ell)^ia_i$ and replace 2^ℓ by x, giving $f_a=\sum a_i x^i\in\mathbb{Z}[\mathsf{x}].$
- *polynomial multiplication:* Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.
- *"dechunking":* Replace *x* in *f^c* by 2*^ℓ* . (In other words, *evaluate f^c* at 2*^ℓ* .)

Correctness: The map $x \mapsto 2^{\ell}$ is a *ring homomorphism*.

Task: Given $a, b \in \mathbb{Z}$, compute $c = a \cdot b$.

Observation: This is equivalent to multiplying polynomials.

- ℓ -bit chunking: Write $a=\sum_{i=0}^n(2^\ell)^ia_i$ and replace 2^ℓ by x, giving $f_a=\sum a_i x^i\in\mathbb{Z}[\mathsf{x}].$
- *polynomial multiplication:* Compute $f_c = f_a \cdot f_b \in \mathbb{Z}[x]$ using any method.
- *"dechunking":* Replace *x* in *f^c* by 2*^ℓ* . (In other words, *evaluate f^c* at 2*^ℓ* .)

Correctness: The map $x \mapsto 2^{\ell}$ is a *ring homomorphism*.

(The reverse reduction works as well, using *Kronecker substitution*: Given $f, q \in \mathbb{Z}[x]$, choose large 2^{ℓ} , compute $c = f(2^{\ell}) \cdot g(2^{\ell})$, and recover $f \cdot g$ from c via ℓ -bit chunking.)

Observation: Multiplication in product rings $R_1 \times \cdots \times R_n$ is *component-wise* \implies *O*(*n*)!

Observation: Multiplication in product rings $R_1 \times \cdots \times R_n$ is *component-wise* $\Rightarrow O(n)!$ Chinese Remainder Theorem (CRT): If $gcd(f, g) = 1$, then $R[x]/(f \cdot g) \cong R[x]/f \times R[x]/g$.

Observation: Multiplication in product rings $R_1 \times \cdots \times R_n$ is *component-wise* $\implies O(n)!$ Chinese Remainder Theorem (CRT): If $gcd(f, q) = 1$, then $R[x]/(f \cdot q) \cong R[x]/f \times R[x]/q$. Fourier transform computes $R[x]/(x^n - 1) \longrightarrow \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$.

Observation: Multiplication in product rings $R_1 \times \cdots \times R_n$ is *component-wise* \implies $O(n)!$ Chinese Remainder Theorem (CRT): If $gcd(f, q) = 1$, then $R[x]/(f \cdot q) \cong R[x]/f \times R[x]/q$. Fourier transform computes $R[x]/(x^n - 1) \longrightarrow \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a *principal* n^{th} *root of unity.* Over C, can use $\omega_n = \exp(2\pi i/n)$.)

Observation: Multiplication in product rings $R_1 \times \cdots \times R_n$ is *component-wise* $\implies O(n)!$ Chinese Remainder Theorem (CRT): If $gcd(f, q) = 1$, then $R[x]/(f \cdot q) \cong R[x]/f \times R[x]/q$. Fourier transform computes $R[x]/(x^n - 1) \longrightarrow \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a *principal nth root of unity.* Over C, can use $\omega_n = \exp(2\pi i/n)$.)

Fast Fourier transform takes time only *O*(*n* log *n*)!

Observation: Multiplication in product rings $R_1 \times \cdots \times R_n$ is *component-wise* $\implies O(n)!$ Chinese Remainder Theorem (CRT): If $gcd(f, q) = 1$, then $R[x]/(f \cdot q) \cong R[x]/f \times R[x]/q$. Fourier transform computes $R[x]/(x^n - 1) \longrightarrow \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a *principal nth root of unity.* Over C, can use $\omega_n = \exp(2\pi i/n)$.)

Fast Fourier transform takes time only *O*(*n* log *n*)! Essential trick: *remainder tree*.

Observation: Multiplication in product rings $R_1 \times \cdots \times R_n$ is *component-wise* $\implies O(n)!$ Chinese Remainder Theorem (CRT): If $gcd(f, q) = 1$, then $R[x]/(f \cdot q) \cong R[x]/f \times R[x]/q$. Fourier transform computes $R[x]/(x^n - 1) \longrightarrow \prod_{i=0}^{n-1} R[x]/(x - \omega_n^i)$. (Here ω_n is a *principal nth root of unity.* Over C, can use $\omega_n = \exp(2\pi i/n)$.)

Fast Fourier transform takes time only *O*(*n* log *n*)! Essential trick: *remainder tree*.

=*⇒* [FFT + pointwise multiplication + inverse FFT] is only *O*(*n* log *n*) operations in *R*.

FFT tree for $R[x]/(x^{2^m} - 1)$

Institute of Information Science, Academia Sinica 31 August 2022 3/24

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

• Input: *c*⁰ + *c*1*x* + ... + *c*2*k−*¹*x* 2*k−*1 .

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: *c*⁰ + *c*1*x* + ... + *c*2*k−*¹*x* 2*k−*1 .
- x^{i} -coefficient of "left" output is $(c_{i} + \tau c_{k+i})$.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: *c*⁰ + *c*1*x* + ... + *c*2*k−*¹*x* 2*k−*1 .
- x^{i} -coefficient of "left" output is $(c_{i} + \tau c_{k+i})$.
- *x i* -coefficient of "right" output is (*cⁱ − τck*+*ⁱ*).

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: *c*⁰ + *c*1*x* + ... + *c*2*k−*¹*x* 2*k−*1 .
- x^{i} -coefficient of "left" output is $(c_{i} + \tau c_{k+i})$.
- *x i* -coefficient of "right" output is (*cⁱ − τck*+*ⁱ*).

Going up one layer: Compute the inverse map.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: *c*⁰ + *c*1*x* + ... + *c*2*k−*¹*x* 2*k−*1 .
- x^{i} -coefficient of "left" output is $(c_{i} + \tau c_{k+i})$.
- *x i* -coefficient of "right" output is (*cⁱ − τck*+*ⁱ*).

Going up one layer: Compute the inverse map.

• For each i, have $d_i = c_i + \tau c_{k+i}$ and $e_i = c_i - \tau c_{k+i}$; want (c_i, c_{k+i}) .

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: *c*⁰ + *c*1*x* + ... + *c*2*k−*¹*x* 2*k−*1 .
- x^{i} -coefficient of "left" output is $(c_{i} + \tau c_{k+i})$.
- *x i* -coefficient of "right" output is (*cⁱ − τck*+*ⁱ*).

Going up one layer: Compute the inverse map.

- For each i, have $d_i = c_i + \tau c_{k+i}$ and $e_i = c_i \tau c_{k+i}$; want (c_i, c_{k+i}) .
- Linear algebra $\leadsto c_i = (d_i + e_i)/2$ and $c_{k+i} = \tau^{-1}(d_i e_i)/2$.

Going <u>down</u> one layer: Compute $R[x]/(x^{2k}-\tau^2) \xrightarrow{\sim} R[x]/(x^k-\tau) \times R[x]/(x^k+\tau)$.

- Input: *c*⁰ + *c*1*x* + ... + *c*2*k−*¹*x* 2*k−*1 .
- x^{i} -coefficient of "left" output is $(c_{i} + \tau c_{k+i})$.
- *x i* -coefficient of "right" output is (*cⁱ − τck*+*ⁱ*).

Going up one layer: Compute the inverse map.

- For each i, have $d_i = c_i + \tau c_{k+i}$ and $e_i = c_i \tau c_{k+i}$; want (c_i, c_{k+i}) .
- Linear algebra $\leadsto c_i = (d_i + e_i)/2$ and $c_{k+i} = \tau^{-1}(d_i e_i)/2$.

=*⇒* Work per layer is *O*(*n*), and there are *O*(log *n*) layers. =*⇒ O*(*n* log *n*).

Butterflies

Butterflies

Cooley–Tukey butterfly

Reduce
$$
f = c_0 + c_1x + ... + c_{2k-1}c^{2k-1}
$$

modulo $(x^k - \tau)$ and $(x^k + \tau)$.

Butterflies

Cooley–Tukey butterfly

Gentleman–Sande butterfly

Reduce
$$
f = c_0 + c_1x + ... + c_{2k-1}c^{2k-1}
$$

modulo $(x^k - \tau)$ and $(x^k + \tau)$.

 $\text{Recover } 2 \cdot f \in R[x]/(x^{2k} - \tau^2)$ from $(f \mod (X^k - \tau), f \mod (X^k + \tau)).$

Institute of Information Science, Academia Sinica 31 August 2022 5/24

Number-Theoretic Transform is a Fourier transform over a *finite* ring (typically F*q*). Much more convenient for computers than, say, working over C.

Number-Theoretic Transform is a Fourier transform over a *finite* ring (typically F*q*). Much more convenient for computers than, say, working over C.

• Multiplications in Z[*x*] can be emulated by choosing *q* large enough.

Number-Theoretic Transform is a Fourier transform over a *finite* ring (typically F*q*). Much more convenient for computers than, say, working over C.

• Multiplications in Z[*x*] can be emulated by choosing *q* large enough.

We require an *n* th principal root of unity. For ^F*q*, this means *ⁿ [|]* (*^q [−]* ¹).

Number-Theoretic Transform is a Fourier transform over a *finite* ring (typically F*q*). Much more convenient for computers than, say, working over C.

• Multiplications in Z[*x*] can be emulated by choosing *q* large enough.

We require an *n* th principal root of unity. For ^F*q*, this means *ⁿ [|]* (*^q [−]* ¹).

• If ω_n doesn't exist but $\omega_{n/d}$ does, can do incomplete NTT: $x^n-1=\prod_{i=0}^{n/d-1}(x^d-\omega_{n/d}^i).$ *Base multiplication* will be on degree-*d* polynomials instead of base-ring elements.

Number-Theoretic Transform is a Fourier transform over a *finite* ring (typically F*q*). Much more convenient for computers than, say, working over C.

• Multiplications in Z[*x*] can be emulated by choosing *q* large enough.

We require an *n* th principal root of unity. For ^F*q*, this means *ⁿ [|]* (*^q [−]* ¹).

• If ω_n doesn't exist but $\omega_{n/d}$ does, can do incomplete NTT: $x^n-1=\prod_{i=0}^{n/d-1}(x^d-\omega_{n/d}^i).$ *Base multiplication* will be on degree-*d* polynomials instead of base-ring elements.

Note that *R* doesn't have to be a field: Another useful choice is \mathbb{Z}/q with $q = q_1q_2$.

Number-Theoretic Transform is a Fourier transform over a *finite* ring (typically F*q*). Much more convenient for computers than, say, working over C.

• Multiplications in Z[*x*] can be emulated by choosing *q* large enough.

We require an *n* th principal root of unity. For ^F*q*, this means *ⁿ [|]* (*^q [−]* ¹).

• If ω_n doesn't exist but $\omega_{n/d}$ does, can do incomplete NTT: $x^n-1=\prod_{i=0}^{n/d-1}(x^d-\omega_{n/d}^i).$ *Base multiplication* will be on degree-*d* polynomials instead of base-ring elements.

Note that *R* doesn't have to be a field: Another useful choice is \mathbb{Z}/q with $q = q_1q_2$.

• Compute NTT modulo *q*¹ and *q*² separately, recombine via CRT F*^q*¹ *×* F*^q*² *[∼]−→* ^Z*/q*.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \Rightarrow Good asymptotic complexity.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible. =*⇒* Chop into *≤*word-sized coefficients; use longer NTT if needed.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

- =*⇒* Chop into *≤*word-sized coefficients; use longer NTT if needed.
- =*⇒* Use *≤*word-sized moduli *qⁱ* suitable for fast reductions.

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs. We can leverage these insights to speed up integer multiplication too.

Schönhage-Strassen applies FFT multiplication *recursively* to the coefficient multiplications occurring within the FFT. \implies Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

- =*⇒* Chop into *≤*word-sized coefficients; use longer NTT if needed.
- =*⇒* Use *≤*word-sized moduli *qⁱ* suitable for fast reductions.

Our algorithm isn't even properly specified for arbitrary lengths. If it were, it would scale worse than Schönhage–Strassen. Still, it appears to be *faster for medium-sized integers!*

• Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.
- Comparison to existing cryptographic software and other, less sophisticated integer-multiplication algorithms.

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.
- Comparison to existing cryptographic software and other, less sophisticated integer-multiplication algorithms.

Conclusion: NTTs can compete — even win! — for integers around **a few thousand bits**.

- Optimized implementation of NTT-based multiplication for two popular Arm microcontrollers (one low-end, one high-end).
- Parameters were carefully adjusted to our target architectures, for integer sizes of cryptographic relevance.
- Comparison to existing cryptographic software and other, less sophisticated integer-multiplication algorithms.

Conclusion: NTTs can compete — even win! — for integers around **a few thousand bits**.

Compare conventional wisdom:

"[Schönhage–Strassen] starts to outperform [...] for numbers beyond 2 2 ¹⁵ *to* 2 2 17 *."* (Wikipedia)

Target Architectures

- Focus on 32-bit Arm microcontrollers
- First target: Arm Cortex-M3
	- Announced in 2004
	- Implements Armv7-M
	- Interesting/dangerous feature: Timing of long multiplications (e.g., UMULL) is input-dependent
	- We make use of STM32 Nucleo-F207ZG with the STM32F207ZG
	- $•$ \$ 20

Target Architectures

- Focus on 32-bit Arm microcontrollers
- First target: Arm Cortex-M3
	- Announced in 2004
	- Implements Armv7-M
	- Interesting/dangerous feature: Timing of long multiplications (e.g., UMULL) is input-dependent *→* Avoid for constant-time code
	- We make use of STM32 Nucleo-F207ZG with the STM32F207ZG
	- $•$ \$ 20

Target Architectures

- Focus on 32-bit Arm microcontrollers
- First target: Arm Cortex-M3
	- Announced in 2004
	- Implements Armv7-M
	- Interesting/dangerous feature: Timing of long multiplications (e.g., UMULL) is input-dependent
		- *→* Avoid for constant-time code
	- We make use of STM32 Nucleo-F207ZG with the STM32F207ZG
	- $•520$

Target Architectures (2)

- Second target: Arm Cortex-M55
	- Announced in 2020
	- Implements Armv8-M
	- First core to implement the M-profile vector extension (MVE) a.k.a. Helium
	- No development boards available as
	- We use an FPGA prototyping board (Arm MPS3) with the AN552 model
	- $•$ \$ 1500

Target Architectures (2)

- Second target: Arm Cortex-M55
	- Announced in 2020
	- Implements Armv8-M
	- First core to implement the M-profile vector extension (MVE) a.k.a. Helium
	- No development boards available as of now
	- We use an FPGA prototyping board (Arm MPS3) with the AN552 model
	- \$ 1500

Fermat Number Transforms (FNT)

- Recall: For NTTs we require 2*^k | q −* 1 with prime q
- <u>Fermat numbers:</u> $2^{2^k} + 1$
- Fermat primes: 3, 5, 17, 257, 65537
- Example: 65537
	- $\omega_2 = -1 = 2^{16}$
	- \cdot $\omega_4 = 2^8$
	- \cdot $\omega_8 = 2^4$
	- $\omega_{16} = 2^2$
	- $\omega_{32} = 2^1$
- First 5 layers of the FFT have multiplications by powers of two
	- *→* Can use shifts instead of multiplications
	- *→* Particularly useful on the Cortex-M3!

Fermat Number Transforms (FNT)

- Recall: For NTTs we require 2*^k | q −* 1 with prime q
- <u>Fermat numbers:</u> $2^{2^k} + 1$
- Fermat primes: 3, 5, 17, 257, 65537
- Example: 65537
	- $\omega_2 = -1 = 2^{16}$
	- \cdot $\omega_4 = 2^8$
	- $\cdot \ \omega_8 = 2^4$
	- $\omega_{16} = 2^2$
	- $\omega_{32} = 2^1$
- First 5 layers of the FFT have multiplications by powers of two
	- *→* Can use shifts instead of multiplications
	- *→* Particularly useful on the Cortex-M3!

Fermat Number Transforms (FNT)

- Recall: For NTTs we require 2*^k | q −* 1 with prime q
- <u>Fermat numbers:</u> $2^{2^k} + 1$
- Fermat primes: 3, 5, 17, 257, 65537
- Example: 65537
	- $\omega_2 = -1 = 2^{16}$
	- \cdot $\omega_4 = 2^8$
	- $\cdot \ \omega_8 = 2^4$
	- $\omega_{16} = 2^2$
	- $\omega_{32} = 2^1$
- First 5 layers of the FFT have multiplications by powers of two
	- \rightarrow Can use shifts instead of multiplications
	- *→* Particularly useful on the Cortex-M3!

Parameter Choices

- High-level goal: Efficient *N*-bit (2048, 4096) multiplication
	- Chunk up number in *ℓ*-bit coefficients
	- Pad with zeros to have an *n*-coefficient polynomial
	- Each coefficient is modulo small $q = q_1q_2$
	- Perform a *k*-layer NTT-based multiplication
- Constraint 1: We want to make efficient use of the available multipliers
	- M3:

- *→* want to limit moduli *qⁱ* to 16 bit
- \rightarrow special case: FNT with q_2 = 65537 for NTT
- M55:

 v mul 32 \times 32 \rightarrow 32 bit (low multiplication)

→ want to limit moduli *qⁱ* to 32 bit

Parameter Choices

- High-level goal: Efficient *N*-bit (2048, 4096) multiplication
	- Chunk up number in *ℓ*-bit coefficients
	- Pad with zeros to have an *n*-coefficient polynomial
	- Each coefficient is modulo small $q = q_1 q_2$
	- Perform a *k*-layer NTT-based multiplication
- Constraint 1: We want to make efficient use of the available multipliers
	- M3:

```
mul 32 \times 32 \rightarrow 32 bit (low multiplication)
```
- *→* want to limit moduli *qⁱ* to 16 bit
- \rightarrow special case: FNT with $q_2 = 65537$ for NTT
- M55:

```
vmul 32 \times 32 \rightarrow 32 bit (low multiplication)
```
- vqrdmulh: $32 \times 32 \rightarrow 32$ bit (rounding doubling high multiplication)
- *→* want to limit moduli *qⁱ* to 32 bit

- Constraint 2: Need to be able to represent the 2*N*-bit result \rightarrow *n* $>$ [2*N*/ ℓ]
- Constraint 3: *n* should be NTT-friendly
	- *→* power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus \rightarrow restrict to prime q_1, q_2

→ 2 *k [|] ^q*¹ *[−]* 1 and 2*^k | q*² *−* 1 to have the required principal roots of unity

- Constraint 2: Need to be able to represent the 2*N*-bit result \rightarrow *n* $>$ [2*N*/ ℓ]
- Constraint 3: *n* should be NTT-friendly *→* power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus \rightarrow restrict to prime q_1, q_2

→ 2 *k [|] ^q*¹ *[−]* 1 and 2*^k | q*² *−* 1 to have the required principal roots of unity

- Constraint 2: Need to be able to represent the 2*N*-bit result \rightarrow *n* \geq [2*N*/ ℓ]
- Constraint 3: *n* should be NTT-friendly
	- *→* power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus
	- \rightarrow restrict to prime q_1, q_2

→ 2 *k [|] ^q*¹ *[−]* 1 and 2*^k | q*² *−* 1 to have the required principal roots of unity

- Constraint 2: Need to be able to represent the 2*N*-bit result \rightarrow *n* \geq [2*N*/ ℓ]
- Constraint 3: *n* should be NTT-friendly
	- *→* power of two or small multiple of power of two
- Constraint 4: Require NTT-friendly modulus
	- \rightarrow restrict to prime q_1, q_2

→ 2 *k [|] ^q*¹ *[−]* 1 and 2*^k | q*² *−* 1 to have the required principal roots of unity

Low-level: Modular Coefficient Multiplication on Cortex-M3

NTT: Montgomery mult mul a, a, b mul t, a, *−q [−]*¹ mod *[±]*2 16 sxth t, t mla a, t, q, a asr a, a, #16

NTT: Barrett reductions mul t, a, $\lceil R/q \rceil$

add $t, t, #(R/2)$ asr t, t, $#log_2 R$

mls a, t, q, a

FNT: Reduction mod 65537 ubfx t, a, #0, #16 sub a, t, a, asr#16

Low-level: Modular Coefficient Multiplication on Cortex-M55

- We make use of "Barrett multiplication" from Becker–Hwang–Kannwischer–Yang–Yang (CHES 2022) https://tches.iacr.org/index.php/TCHES/article/view/9295
- Pre-compute: $b' = \frac{\lfloor b2^{32}/q \rfloor}{2}$
- Implement 4 parallel Barrett multiplications
	- vmul l, a, b vqrdmulh h, a, b' vmla l, h, q

- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo $n = pq$ (4096-bit *n*, 2048-bit p, q)
- Encryption:
	- $c = m^e$ mod *n* (usually, $e = 65537$)

→ requires 4096-bit multiplication; *e* may leak via timing

- Decryption:
	- c^d mod $n = \text{CRT}(c^d \text{ mod } p, c^d \text{ mod } q)$
	- *→* requires 2048-bit multiplication; *d* must not leak via timing
- Fixed-window exponentiation for decryption
	- *→* Use constant-time table look-up!

- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo $n = pq$ (4096-bit *n*, 2048-bit p, q)
- Encryption:
	- $c = m^e$ mod *n* (usually, $e = 65537$)
	- *→* requires 4096-bit multiplication; *e* may leak via timing
- Decryption:
	- c^d mod $n = \text{CRT}(c^d \text{ mod } p, c^d \text{ mod } q)$
	- *→* requires 2048-bit multiplication; *d* must not leak via timing
- Fixed-window exponentiation for decryption
	- *→* Use constant-time table look-up!

- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo $n = pq$ (4096-bit *n*, 2048-bit p, q)
- Encryption:
	- $c = m^e$ mod *n* (usually, $e = 65537$)

→ requires 4096-bit multiplication; *e* may leak via timing

- Decryption:
	- c^d mod $n = \text{CRT}(c^d \mod p, c^d \mod q)$
	- *→* requires 2048-bit multiplication; *d* must not leak via timing
- Fixed-window exponentiation for decryption
	- *→* Use constant-time table look-up!

- Integer multiplication is dominating operation within RSA
- Need to compute expmod modulo $n = pq$ (4096-bit *n*, 2048-bit p, q)
- Encryption:
	- $c = m^e$ mod *n* (usually, $e = 65537$)

→ requires 4096-bit multiplication; *e* may leak via timing

• Decryption:

 c^d mod $n = \text{CRT}(c^d \mod p, c^d \mod q)$

- *→* requires 2048-bit multiplication; *d* must not leak via timing
- Fixed-window exponentiation for decryption

→ Use constant-time table look-up!

• Within expmod, we need a modmul

- Common way to implement modmul: Montgomery multiplication
	-
	- *t* = *c · p [−]*¹ mod *R*
	- $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
	- $c = \text{i} \text{NTT}(\text{NTT}(a) \circ \text{NTT}(b))$
	- *t* = *iNTT*(*NTT*(*c* mod *R*) *◦ NTT*(*p [−]*¹ mod *R*))
	- *r* = (*c − iNTT*(*NTT*(*t* mod *R*) *◦ NTT*(*p*)))*/R*
- We can pre-compute *NTT*(*p*) and *NTT*(*p [−]*¹ mod *R*)
- Need 4*×* NTT and 3*×* iNTT
- Squaring: $a = b \rightarrow$ only 3 \times NTT

- Within expmod, we need a modmul
- Common way to implement modmul: Montgomery multiplication
	- $c = a \cdot b$ *t* = *c · p [−]*¹ mod *R*
	- $r = (c t \cdot p)/R$
- We can actually implement this using NTTs: $c = \text{i} \text{NTT}(\text{NTT}(a) \circ \text{NTT}(b))$
	- *t* = *iNTT*(*NTT*(*c* mod *R*) *◦ NTT*(*p [−]*¹ mod *R*)) *r* = (*c − iNTT*(*NTT*(*t* mod *R*) *◦ NTT*(*p*)))*/R*
- We can pre-compute *NTT*(*p*) and *NTT*(*p [−]*¹ mod *R*)
- Need 4*×* NTT and 3*×* iNTT
- Squaring: $a = b \rightarrow$ only $3 \times NTT$

- Within expmod, we need a modmul
- Common way to implement modmul: Montgomery multiplication
	- $c = a \cdot b$
	- *t* = *c · p [−]*¹ mod *R*
	- $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
	- $c = \text{INTT}(NTT(a) \circ \text{NTT}(b))$
	- *t* = *iNTT*(*NTT*(*c* mod *R*) *◦ NTT*(*p [−]*¹ mod *R*))
	- $r = (c iNTT(NTT(t \text{ mod } R) \circ NTT(p)))/R$
- We can pre-compute *NTT*(*p*) and *NTT*(*p [−]*¹ mod *R*)
- Need 4*×* NTT and 3*×* iNTT
- Squaring: $a = b \rightarrow$ only $3 \times NTT$

- Within expmod, we need a modmul
- Common way to implement modmul: Montgomery multiplication
	- $c = a \cdot b$
	- *t* = *c · p [−]*¹ mod *R*
	- $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
	- $c = \text{INTT}(NTT(a) \circ \text{NTT}(b))$
	- *t* = *iNTT*(*NTT*(*c* mod *R*) *◦ NTT*(*p [−]*¹ mod *R*))
	- $r = (c iNTT(NTT(t \text{ mod } R) \circ NTT(p)))/R$
- We can pre-compute *NTT*(*p*) and *NTT*(*p [−]*¹ mod *R*)
- Need 4*×* NTT and 3*×* iNTT
- Squaring: $a = b \rightarrow$ only $3 \times NTT$

- Within expmod, we need a modmul
- Common way to implement modmul: Montgomery multiplication
	- $c = a \cdot b$
	- *t* = *c · p [−]*¹ mod *R*
	- $r = (c t \cdot p)/R$
- We can actually implement this using NTTs:
	- $c = \text{INTT}(NTT(a) \circ \text{NTT}(b))$
	- *t* = *iNTT*(*NTT*(*c* mod *R*) *◦ NTT*(*p [−]*¹ mod *R*))
	- $r = (c iNTT(NTT(t \text{ mod } R) \circ NTT(p)))/R$
- We can pre-compute *NTT*(*p*) and *NTT*(*p [−]*¹ mod *R*)
- Need 4*×* NTT and 3*×* iNTT
- Squaring: $a = b \rightarrow$ only $3 \times$ NTT

Results: Cortex-M3

RSA-2048 using CRT for decryption

¹https://bearssl.org/

Results: Cortex-M55

RSA-2048 using CRT for decryption

¹https://github.com/Mbed-TLS/mbedtls ²https://bearssl.org/
Profiling of mulmod

Institute of Information Science, Academia Sinica 31 August 2022 21/24

Conclusions

- NTT-based integer multiplication can be superior for relatively small sizes
	- We implemented 2048-bit and 4096-bit multiplications
	- We target two common Arm platforms: Cortex-M3 and Cortex-M55
- Progress in post-quantum cryptography (lattice-based crypto) helps speeding up pre-quantum crypto
- NTT are much easier to vectorize than other integer-multiplication algorithms
	- Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

Conclusions

- NTT-based integer multiplication can be superior for relatively small sizes
	- We implemented 2048-bit and 4096-bit multiplications
	- We target two common Arm platforms: Cortex-M3 and Cortex-M55
- Progress in post-quantum cryptography (lattice-based crypto) helps speeding up pre-quantum crypto
- NTT are much easier to vectorize than other integer-multiplication algorithms
	- Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

Conclusions

- NTT-based integer multiplication can be superior for relatively small sizes
	- We implemented 2048-bit and 4096-bit multiplications
	- We target two common Arm platforms: Cortex-M3 and Cortex-M55
- Progress in post-quantum cryptography (lattice-based crypto) helps speeding up pre-quantum crypto
- NTT are much easier to vectorize than other integer-multiplication algorithms
	- Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

- Limited to certain integer sizes
- Limited to chosen platforms (Cortex-M3, Cortex-M55)
- Our code is heavily unrolled
	- May be problematic on the Cortex-M3 due to ROM/flash constraints
	- Performance overhead of re-rolling the code is hopefully small
- expmod allows some pre-computation (modulus and its inverse in NTT domain) favouring NTT-based multiplication
	- General-purpose modular multiplication will be slower

- Limited to certain integer sizes
- Limited to chosen platforms (Cortex-M3, Cortex-M55)
- Our code is heavily unrolled
	- May be problematic on the Cortex-M3 due to ROM/flash constraints
	- Performance overhead of re-rolling the code is hopefully small
- expmod allows some pre-computation (modulus and its inverse in NTT domain) favouring NTT-based multiplication
	- General-purpose modular multiplication will be slower

- Limited to certain integer sizes
- Limited to chosen platforms (Cortex-M3, Cortex-M55)
- Our code is heavily unrolled
	- May be problematic on the Cortex-M3 due to ROM/flash constraints
	- Performance overhead of re-rolling the code is hopefully small
- expmod allows some pre-computation (modulus and its inverse in NTT domain) favouring NTT-based multiplication
	- General-purpose modular multiplication will be slower

- How does this translate to other platforms?
	- Unclear
	- For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle umaal) that help schoolbook much more than NTTs
	- Armv8-A/Armv9-A processors would be interesting to look at in the future
- Can we scale this to any size of integers (*≥* 2048)?
	- Unclear
	- Parameters have been carefully picked for the two sizes (2048, 4096)
	- General-purpose integer multiplication code is trickier!

- How does this translate to other platforms?
	- Unclear
	- For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle umaal) that help schoolbook much more than NTTs
	- Armv8-A/Armv9-A processors would be interesting to look at in the future
- Can we scale this to any size of integers (*≥* 2048)?
	- Unclear
	- Parameters have been carefully picked for the two sizes (2048, 4096)
	- General-purpose integer multiplication code is trickier!

Thanks!

https://eprint.iacr.org/2022/439 https://github.com/ntt-int-mul/ntt-int-mul-m3 https://gitlab.com/arm-research/security/pqmx

