Efficient Multiplication of
Somewhat Small Integers
using Number-Theoretic Transforms

Hanno Becker Vincent Hwang Matthias J. Kannwischer
Lorenz Panny Bo-Yin Yang

31 August 2022, IWSEC 2022, Tokyo, Japan [online]

From integers to polynomials and back

Task: Given a,b € Z, computec =a - b.

S,

Institute of Information Science, Academia Sinica

1/24

From integers to polynomials and back

Task: Given a,b € Z, computec =a - b.

Observation: This is equivalent to multiplying polynomials.

Institute of Information Science, Academia Sinica

1/24

From integers to polynomials and back

Task: Given a,b € Z, computec =a - b.

Observation: This is equivalent to multiplying polynomials.

« (-bit chunking: Write a = "7 ;(2%)'a; and replace 2 by x, giving fo = 3 aix' € Z[x].

Institute of Information Science, Academia Sinica

1/24

From integers to polynomials and back

Task: Given a,b € Z, computec =a - b.
Observation: This is equivalent to multiplying polynomials.

« (-bit chunking: Write a = "7 ;(2%)'a; and replace 2 by x, giving fo = 3 aix' € Z[x].
« polynomial multiplication: Compute f. = fq - fy € Z[x] using any method.

Institute of Information Science, Academia Sinica 1/24

From integers to polynomials and back

Task: Given a,b € Z, computec =a - b.

Observation: This is equivalent to multiplying polynomials.
« (-bit chunking: Write a = "7 ;(2%)'a; and replace 2 by x, giving fo = 3 aix' € Z[x].
« polynomial multiplication: Compute f. = fq - fy € Z[x] using any method.
« “dechunking”: Replace x in f. by 2°. (In other words, evaluate f. at 2°.)

Institute of Information Science, Academia Sinica 1/24

From integers to polynomials and back

Task: Given a,b € Z, computec =a - b.

Observation: This is equivalent to multiplying polynomials.
« (-bit chunking: Write a = "7 ;(2%)'a; and replace 2 by x, giving fo = 3 aix' € Z[x].
« polynomial multiplication: Compute f. = fq - fy € Z[x] using any method.

« “dechunking”: Replace x in f. by 2°. (In other words, evaluate f. at 2°.)

Correctness: The map x — 2¢ is a ring homomorphism.

Institute of Information Science, Academia Sinica 1/24

From integers to polynomials and back

Task: Given a,b € Z, computec =a - b.

Observation: This is equivalent to multiplying polynomials.
« (-bit chunking: Write a = "7 ;(2%)'a; and replace 2 by x, giving fo = 3 aix' € Z[x].
« polynomial multiplication: Compute f. = fq - fy € Z[x] using any method.

« “dechunking”: Replace x in f. by 2°. (In other words, evaluate f. at 2°.)

Correctness: The map x — 2¢ is a ring homomorphism.

(The reverse reduction works as well, using Kronecker substitution: Given f, g € Z[x],
choose large 2¢, compute ¢ = f(2¢) - g(2%), and recover f - g from c via ¢-bit chunking.)

Institute of Information Science, Academia Sinica 1/24

FFT-based polynomial multiplication

Observation: Multiplication in product rings Ry x - -+ x Rp, is component-wise = O(n)!

S,

Institute of Information Science, Academia Sinica

2/24

FFT-based polynomial multiplication

Observation: Multiplication in product rings Ry x - -+ x Rp, is component-wise = O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[X]/(f- g) = R[x]/f x R[x]/g.

S,

Institute of Information Science, Academia Sinica

2/24

FFT-based polynomial multiplication

Observation: Multiplication in product rings Ry x - -+ x Rp, is component-wise = O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[X]/(f- g) = R[x]/f x R[x]/g.

Fourier transform computes R[x]/(X" — 1) == T[] RIX]/(x — w}).

I,

Institute of Information Science, Academia Sinica 22

FFT-based polynomial multiplication

Observation: Multiplication in product rings Ry x - -+ x Rp, is component-wise = O(n)!
Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[X]/(f- g) = R[x]/f x R[x]/g.

Fourier transform computes R[x]/(X" — 1) == T[] RIX]/(x — w}).
(Here wn is a principal n* root of unity. Over C, can use wp = exp(2wi/n).)

Institute of Information Science, Academia Sinica 22

FFT-based polynomial multiplication

Observation: Multiplication in product rings Ry x - -+ x Rp, is component-wise = O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[X]/(f- g) = R[x]/f x R[x]/g.

Fourier transform computes R[x]/(X" — 1) == T[] RIX]/(x — w}).
(Here wn is a principal n* root of unity. Over C, can use wp = exp(2wi/n).)

Fast Fourier transform takes time only O(nlogn)!

Institute of Information Science, Academia Sinica 22

FFT-based polynomial multiplication

Observation: Multiplication in product rings Ry x - -+ x Rp, is component-wise = O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[X]/(f- g) = R[x]/f x R[x]/g.

Fourier transform computes R[x]/(X" — 1) == T[] RIX]/(x — w}).
(Here wn is a principal n* root of unity. Over C, can use wp = exp(2wi/n).)

Fast Fourier transform takes time only O(nlogn)! Essential trick: remainder tree.

Institute of Information Science, Academia Sinica 22

FFT-based polynomial multiplication

Observation: Multiplication in product rings Ry x - -+ x Rp, is component-wise = O(n)!

Chinese Remainder Theorem (CRT): If gcd(f,g) = 1, then R[X]/(f- g) = R[x]/f x R[x]/g.

Fourier transform computes R[x]/(X" — 1) == T[] RIX]/(x — w}).
(Here wn is a principal n* root of unity. Over C, can use wp = exp(2wi/n).)

Fast Fourier transform takes time only O(nlogn)! Essential trick: remainder tree.

= [FFT + pointwise multiplication + inverse FFT] is only O(nlog n) operations in R.

Institute of Information Science, Academia Sinica 22

FFT tree for R[x]/(x*" — 1)

x8—1
Xt —1 Xt +1
X2 —1 X2 +1 X2 — w} X2+ wi
X=1 X+1 X—-wi X+wi —wg X+tws X—wy X+ws
I I I I || n I I
Xx—wd X—wf X—w§ x—w§ X—w§ X—wy X—wi = X—w}

Institute of Information Science, Academia Sinica

3/24

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).

S,

Institute of Information Science, Academia Sinica

4)24

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).

« Input: Co + C1X + ... + Cop_1 X2k,

Institute of Information Science, Academia Sinica

4)24

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).
« Input: Co + C1X + ... + Cop_1 X2k,

- x-coefficient of “left” output is (¢; + 7Cp_;)-

Institute of Information Science, Academia Sinica

4)24

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).
« Input: Co + C1X + ... + Cop_1 X2k,
- x-coefficient of “left” output is (¢; + 7Cp_;)-
- x-coefficient of “right” output is (¢; — 7Cx,;)-

Institute of Information Science, Academia Sinica

4)24

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).
« Input: Co + C1X + ... + Cop_1 X2k,
- x-coefficient of “left” output is (¢; + 7Cp_;)-
- x-coefficient of “right” output is (¢; — 7Cx,;)-

Going up one layer: Compute the inverse map.

Institute of Information Science, Academia Sinica

4)24

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).
« Input: Co + C1X + ... + Cop_1 X2k,
- x-coefficient of “left” output is (¢; + 7Cp_;)-
- x-coefficient of “right” output is (¢; — 7Cx,;)-

Going up one layer: Compute the inverse map.

« For each i, have d; = ¢; + 7Cry; and e; = ¢; — TCpj; want (¢;, Cpy)-

Institute of Information Science, Academia Sinica

4)24

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).
« Input: Co + C1X + ... + Cop_1 X2k,
- x-coefficient of “left” output is (¢; + 7Cp_;)-
- x-coefficient of “right” output is (¢; — 7Cx,;)-

Going up one layer: Compute the inverse map.
« For each i, have d; = ¢; + 7Cry; and e; = ¢; — TCpj; want (¢;, Cpy)-
« Linear algebra ~ ¢; = (d; + e;)/2 and ¢z, = 7 '(d; — €;) /2.

Institute of Information Science, Academia Sinica 42

Computing the FFT (and inverse FFT)

Going down one layer: Compute R[x]/(x?* —72) = R[x]/(x* — 7) x R[x]/(x* + 7).
« Input: Co + C1X + ... + Cop_1 X2k,
- x-coefficient of “left” output is (¢; + 7Cp_;)-
- x-coefficient of “right” output is (¢; — 7Cx,;)-

Going up one layer: Compute the inverse map.
« For each i, have d; = ¢; + 7Cry; and e; = ¢; — TCpj; want (¢;, Cpy)-
« Linear algebra ~ ¢; = (d; + e;)/2 and ¢z, = 7 '(d; — €;) /2.

= Work per layer is O(n), and there are O(log n) layers. = O(nlogn).

Institute of Information Science, Academia Sinica 42

Butterflies

Institute of Information Science, Academia Sinica

5/24

Butterflies

Cooley-Tukey butterfly

(o 4 Ci+ TCpryj
Croti ij @ Ci — TChyi
T

Reduce f = Co + C1X + ... + Cop_1¢2RT
modulo (x* — 7) and (x* + 7).

S,

Institute of Information Science, Academia Sinica

5/24

Butterflies

Cooley-Tukey butterfly Gentleman-Sande butterfly
(o P Ci+ TCpryj d; /_/@ di + e
/
Chyi ij © Ci — TChyj e —=(-) QTQ 7 '(d; — &)
T !
Reduce f = co + X + ... + Cop 1€ Recover 2 - f € R[x]/(x*k — 72)
modulo (x* — 7) and (x* + 7). from (f mod (x* — 7), f mod (X* + 7).

Institute of Information Science, Academia Sinica 5/26

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically F,).

Much more convenient for computers than, say, working over C.

Institute of Information Science, Academia Sinica

6/24

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically F,).
Much more convenient for computers than, say, working over C.
« Multiplications in Z[x] can be emulated by choosing g large enough.

Institute of Information Science, Academia Sinica

6/24

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically F,).
Much more convenient for computers than, say, working over C.
« Multiplications in Z[x] can be emulated by choosing g large enough.

We require an nt principal root of unity. For g, this means n | (g — 1).

Institute of Information Science, Academia Sinica 6/24

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically F,).
Much more convenient for computers than, say, working over C.
« Multiplications in Z[x] can be emulated by choosing g large enough.

We require an nt principal root of unity. For g, this means n | (g — 1).
+ If wy doesn't exist but w, 4 does, can do incomplete NTT: x" —1 = [T/ (x? — Whya)-

Base multiplication will be on degree-d polynomials instead of base-ring elements.

Institute of Information Science, Academia Sinica 6/24

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically F,).
Much more convenient for computers than, say, working over C.
« Multiplications in Z[x] can be emulated by choosing g large enough.

We require an nt principal root of unity. For g, this means n | (g — 1).
+ If wy doesn't exist but w, 4 does, can do incomplete NTT: x" —1 = [T/ (x? — Whya)-
Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with g = g1qx.

Institute of Information Science, Academia Sinica

6/24

NTT-based polynomial multiplication

Number-Theoretic Transform is a Fourier transform over a finite ring (typically F,).
Much more convenient for computers than, say, working over C.
« Multiplications in Z[x] can be emulated by choosing g large enough.

We require an nt principal root of unity. For g, this means n | (g — 1).
+ If wy doesn't exist but w, 4 does, can do incomplete NTT: x" —1 = [T/ (x? — Whya)-
Base multiplication will be on degree-d polynomials instead of base-ring elements.

Note that R doesn’t have to be a field: Another useful choice is Z/q with g = g1qx.
- Compute NTT modulo g, and g, separately, recombine via CRT Fq, x Fq, — Z/q.

Institute of Information Science, Academia Sinica

,~

6/24

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Institute of Information Science, Academia Sinica

7/24

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schonhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. = Good asymptotic complexity.

Institute of Information Science, Academia Sinica

7/24

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schonhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. = Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.

Institute of Information Science, Academia Sinica

7/24

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schonhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. = Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
= Chop into <word-sized coefficients; use longer NTT if needed.

Institute of Information Science, Academia Sinica

7/24

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schonhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. = Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
= Chop into <word-sized coefficients; use longer NTT if needed.
— Use <word-sized moduli g; suitable for fast reductions.

Institute of Information Science, Academia Sinica

7/24

Asymptotics aside: Concrete performance

Recent focus on lattice-based cryptography taught us a lot about fast NTTs.
We can leverage these insights to speed up integer multiplication too.

Schonhage-Strassen applies FFT multiplication recursively to the coefficient
multiplications occurring within the FFT. = Good asymptotic complexity.

In practice, want to move away from big integers as soon as possible.
= Chop into <word-sized coefficients; use longer NTT if needed.
— Use <word-sized moduli g; suitable for fast reductions.

Our algorithm isn't even properly specified for arbitrary lengths. If it were, it would scale
worse than Schonhage-Strassen. Still, it appears to be faster for medium-sized integers!

Institute of Information Science, Academia Sinica

,~

7/24

Our work

 Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

Institute of Information Science, Academia Sinica

8/24

Our work

 Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

« Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

Institute of Information Science, Academia Sinica

8/24

Our work

 Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

« Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

- Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Institute of Information Science, Academia Sinica

8/24

Our work

 Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

« Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

- Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Conclusion: NTTs can compete —even win! —for integers around a few thousand bits.

Institute of Information Science, Academia Sinica

8/24

Our work

 Optimized implementation of NTT-based multiplication for two popular Arm
microcontrollers (one low-end, one high-end).

« Parameters were carefully adjusted to our target architectures, for integer sizes
of cryptographic relevance.

- Comparison to existing cryptographic software and other, less sophisticated
integer-multiplication algorithms.

Conclusion: NTTs can compete —even win! —for integers around a few thousand bits.
Compare conventional wisdom:

“ISchénhage-Strassen] starts to outperform [...] for numbers beyond 22° to 22" ”
(Wikipedia)

Institute of Information Science, Academia Sinica 8/2

Target Architectures

» Focus on 32-bit Arm microcontrollers
« First target: Arm Cortex-M3

+ Announced in 2004
« Implements Armv7-M

a3

90000000000000000000000029908

000000000000000000508000099000

9/24

Institute of Information Science, Academia Sinica

Target Architectures

» Focus on 32-bit Arm microcontrollers

« First target: Arm Cortex-M3
+ Announced in 2004
« Implements Armv7-M
« Interesting/dangerous feature:
Timing of long multiplications (e.g.,
UMULL) is input-dependent
— Avoid for constant-time code

99932333

0000000000000000000000002930

9/24

Institute of Information Science, Academia Sinica

Target Architectures

« Focus on 32-bit Arm microcontrollers
« First target: Arm Cortex-M3

« Announced in 2004

« Implements Armv7-M
Interesting/dangerous feature:
Timing of long multiplications (e.g.,
UMULL) is input-dependent
— Avoid for constant-time code
+ We make use of STM32

Nucleo-F207ZG with the STM32F2072G

+ $20

000000000000000000000000090

9/24

Target Architectures (2)

+ Second target: Arm Cortex-M55
« Announced in 2020
+ Implements Armv8-M
- First core to implement the M-profile
vector extension (MVE) a.k.a. Helium

Institute of Information Science, Academia Sinica

10/24

Target Architectures (2)

+ Second target: Arm Cortex-M55

Announced in 2020

+ Implements Armv8-M

First core to implement the M-profile

vector extension (MVE) a.k.a. Helium

- No development boards available as
of now

- We use an FPGA prototyping board

(Arm MPS3) with the AN552 model

$ 1500

Institute of Information Science, Academia Sinica

10/24

Fermat Number Transforms (FNT)

« Recall: For NTTs we require 2% | g — 1 with prime q
- Fermat numbers: 22° +1

- Fermat primes: 3, 5, 17, 257, 65537

Institute of Information Science, Academia Sinica

11/24

Fermat Number Transforms (FNT)

« Recall: For NTTs we require 2% | g — 1 with prime q
- Fermat numbers: 22° +1

- Fermat primes: 3, 5, 17, 257, 65537
« Example: 65537

* Wy = —1= 216

* wy = 28

* wg = 24

Wi = 22

* W3 = 21

Institute of Information Science, Academia Sinica

11/24

Fermat Number Transforms (FNT)

« Recall: For NTTs we require 2% | g — 1 with prime q
- Fermat numbers: 22° +1

- Fermat primes: 3, 5, 17, 257, 65537
« Example: 65537
Wy =—-1=2"
* wy = 28
o wg =24
Wi = 22
o wp =2
« First 5 layers of the FFT have multiplications by powers of two
— Can use shifts instead of multiplications
— Particularly useful on the Cortex-M3!

Institute of Information Science, Academia Sinica

11/24

Parameter Choices

+ High-level goal: Efficient N-bit (2048, 4096) multiplication
+ Chunk up number in /-bit coefficients
- Pad with zeros to have an n-coefficient polynomial
« Each coefficient is modulo small g = g1
 Perform a k-layer NTT-based multiplication

Institute of Information Science, Academia Sinica

12/24

Parameter Choices

+ High-level goal: Efficient N-bit (2048, 4096) multiplication
+ Chunk up number in /-bit coefficients
- Pad with zeros to have an n-coefficient polynomial
« Each coefficient is modulo small g = g1
 Perform a k-layer NTT-based multiplication
- Constraint 1: We want to make efficient use of the available multipliers
* M3:
mul 32 x 32 — 32 bit (low multiplication)
— want to limit moduli g; to 16 bit
— special case: FNT with g, = 65537 for NTT
* M55:
vmul 32 x 32 — 32 bit (low multiplication)
vgrdmulh: 32 x 32 — 32 bit (rounding doubling high multiplication)
— want to limit moduli g; to 32 bit

Institute of Information Science, Academia Sinica 12/2

Parameter Choices (2)

« Constraint 2: Need to be able to represent the 2N-bit result
—n > [2N//]

S,

Institute of Information Science, Academia Sinica

13/24

Parameter Choices (2)

« Constraint 2: Need to be able to represent the 2N-bit result
—n > [2N//]

« Constraint 3: n should be NTT-friendly
— power of two or small multiple of power of two

Institute of Information Science, Academia Sinica 13/24

Parameter Choices (2)

« Constraint 2: Need to be able to represent the 2N-bit result
—n > [2N//]

« Constraint 3: n should be NTT-friendly
— power of two or small multiple of power of two

+ Constraint 4: Require NTT-friendly modulus
— restrict to prime g1, g,
— 2% | g1 —1and 2% | g, — 1to have the required principal roots of unity

Institute of Information Science, Academia Sinica 13/24

Parameter Choices (2)

« Constraint 2: Need to be able to represent the 2N-bit result
—n > [2N//]

« Constraint 3: n should be NTT-friendly
— power of two or small multiple of power of two

+ Constraint 4: Require NTT-friendly modulus
— restrict to prime g1, g,
— 2% | g1 —1and 2% | g, — 1to have the required principal roots of unity

« Constraint 5: Coefficients of polynomial product must not overflow g
—q>[N/] 2%

Institute of Information Science, Academia Sinica

13/24

Parameter Choices (3)

Cortex-M3
bits (N) ‘ chunking (¢) ‘ poly length (n) ‘ NTT ‘ modulus g = g1 - @,
2048 11 bits 384 128 =27 12289 - 65537
4096 11 bits 768 256 = 28 25601 - 65537
Cortex-M55
bits (N) | chunking (¢) | poly length (n) | NTT| modulus g = g1 - g,
2048 22 bits 192 | 64-3=2°.3|114826273-128919937
4096 22 bits 384(128-3=27-3|114826273 - 128919937

Institute of Information Science, Academia Sinica

14/24

Low-level: Modular Coefficient Multiplication on Cortex-M3

NTT: Montgomery mult NTT: Barrett reductions FNT: Reduction mod 65537
mul a, a, b mul t, a, [R/q] ubfx t, a, #0, #16
mul t, a, —qf1 mod *210 add t, t, #(R/2) sub a, t, a, asr#16
sxth t, t asr t, t, #log, R

mla a, t, q, a mls a, t, q, a

asr a, a, #16

Institute of Information Science, Academia Sinica

15/24

Low-level: Modular Coefficient Multiplication on Cortex-M55

+ We make use of “Barrett multiplication” from
Becker-Hwang-Kannwischer-Yang-Yang (CHES 2022)
https://tches.iacr.org/index.php/TCHES/article/view/9295

32
« Pre-compute: b’ = p227/<ﬂ

+ Implement 4 parallel Barrett multiplications
vmul 1, a, b
vqrdmulh h, a, b'
vmla 1, h, q

Institute of Information Science, Academia Sinica

16/24

https://tches.iacr.org/index.php/TCHES/article/view/9295

Application: RSA

+ Integer multiplication is dominating operation within RSA
+ Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)

S,

Institute of Information Science, Academia Sinica

17/24

Application: RSA

+ Integer multiplication is dominating operation within RSA
+ Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)

« Encryption:
¢ = m® mod n (usually, e = 65537)

— requires 4096-bit multiplication; e may leak via timing

Institute of Information Science, Academia Sinica

17/24

Application: RSA

+ Integer multiplication is dominating operation within RSA

+ Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)
« Encryption:

¢ = m® mod n (usually, e = 65537)

— requires 4096-bit multiplication; e may leak via timing
« Decryption:

¢ mod n = CRT(c mod p, c? mod q)

— requires 2048-bit multiplication; d must not leak via timing

Institute of Information Science, Academia Sinica

17/24

Application: RSA

+ Integer multiplication is dominating operation within RSA
+ Need to compute expmod modulo n = pq (4096-bit n, 2048-bit p, q)

« Encryption:

¢ = m® mod n (usually, e = 65537)

— requires 4096-bit multiplication; e may leak via timing
« Decryption:

¢ mod n = CRT(c mod p, c? mod q)

— requires 2048-bit multiplication; d must not leak via timing
- Fixed-window exponentiation for decryption

— Use constant-time table look-up!

Institute of Information Science, Academia Sinica

17/24

RSA: modmul

+ Within expmod, we need a modmul

Institute of Information Science, Academia Sinica

18/24

RSA: modmul

+ Within expmod, we need a modmul

« Common way to implement modmul: Montgomery multiplication

c=a-b
t=c-p"modR
r=(c—t-p)/R

>,

Institute of Information Science, Academia Sinica

18/24

RSA: modmul

+ Within expmod, we need a modmul

« Common way to implement modmul: Montgomery multiplication

c=a-b
t=c-p"modR
r=(c—t-p)/R

« We can actually implement this using NTTs:
¢ = iNTT(NTT(a) o NTT(b))
t = iNTT(NTT(c mod R) o NTT(p~" mod R))
r = (c — iNTT(NTT(t mod R) o NTT(p)))/R

Institute of Information Science, Academia Sinica

18/24

RSA: modmul

Within expmod, we need a modmul

Common way to implement modmul: Montgomery multiplication
c=a-b

t=c-p"modR

r=(c—t-p)/R

We can actually implement this using NTTs:

¢ = iNTT(NTT(a) o NTT(b))

t = iNTT(NTT(c mod R) o NTT(p~" mod R))

r = (c — iNTT(NTT(t mod R) o NTT(p)))/R

We can pre-compute NTT(p) and NTT(p~" mod R)
Need 4x NTT and 3x iNTT

Institute of Information Science, Academia Sinica

18/24

RSA: modmul

Within expmod, we need a modmul

Common way to implement modmul: Montgomery multiplication
c=a-b

t=c-p"modR

r=(c—t-p)/R

We can actually implement this using NTTs:

¢ = iNTT(NTT(a) o NTT(b))

t = iNTT(NTT(c mod R) o NTT(p~" mod R))

r = (c — iNTT(NTT(t mod R) o NTT(p)))/R

We can pre-compute NTT(p) and NTT(p~" mod R)
Need 4x NTT and 3x iNTT

Squaring: a = b — only 3x NTT

Institute of Information Science, Academia Sinica

18/24

Results: Cortex-M3

‘ n ‘ mulmod | sqrmod cs;xpmodpub“c expmodprivate

This work 220047 | 196830 | 4227473 | 494923435
This work (FIOS) | 2048 | 234041 -| 4912705| 543648872
BearsSsL' 283038 —-| 18350210 | 718347177
This work 510708 | 454128 | 9752690 |2250748647
This work (FIOS) | 4096 | 926523 —-| 19458326 | 4228661467
BearSSL' 1102151 —-| 70443207 | 5505856187

RSA-2048 using CRT for decryption

"https://bearssl.org/

Institute of Information Science, Academia Sinica

19/24

https://bearssl.org/

Results: Cortex-M55

‘ n ‘ mulmod ‘ sqrmod ‘ expmod, piic ‘ expmod,jyate

This work 21330| 19701 389482 50085366
This work (FI0S) 2048 20260 - 426707 50683718
MbedTLS’ 41443 - 884416 | 108441240
BearSSL? 83517 -| 5400650 | 217123645
This work 47660 | 43620 861450 | 218110707
This work (FI0S) 4096 73316 -| 1540685| 358080308
MbedTLS’ 152371 - 3223797 | 755391521
BearSSL? 328801 - | 21254533 | 1646834048

RSA-2048 using CRT for decryption

Thttps://github.com/Mbed-TLS/mbedtls

’https://bearssl.org/

Institute of Information Science, Academia Sinica

https://github.com/Mbed-TLS/mbedtls
https://bearssl.org/

Profiling of mulmod

B NTT

W INTT
——gyy oy base
% 6% CRT

18% 15% M other

Cortex-M3, 2048 bits Cortex-M3, 4096 bits

14%

24% 21%

Cortex-M55, 2048 bits Cortex-M55, 4096 bits

e of Information Science, Academia Sinica 21/24

Conclusions

« NTT-based integer multiplication can be superior for relatively small sizes

+ We implemented 2048-bit and 4096-bit multiplications
» We target two common Arm platforms: Cortex-M3 and Cortex-M55

Institute of Information Science, Academia Sinica

22/24

Conclusions

« NTT-based integer multiplication can be superior for relatively small sizes
+ We implemented 2048-bit and 4096-bit multiplications
» We target two common Arm platforms: Cortex-M3 and Cortex-M55
« Progress in post-quantum cryptography (lattice-based crypto) helps speeding up
pre-quantum crypto

Institute of Information Science, Academia Sinica 22/24

Conclusions

« NTT-based integer multiplication can be superior for relatively small sizes
+ We implemented 2048-bit and 4096-bit multiplications
» We target two common Arm platforms: Cortex-M3 and Cortex-M55
« Progress in post-quantum cryptography (lattice-based crypto) helps speeding up
pre-quantum crypto
« NTT are much easier to vectorize than other integer-multiplication algorithms
- Gives advantage on platforms supporting vector instructions, e.g., Cortex-M55

Institute of Information Science, Academia Sinica

22/24

Conclusions: Limitations

- Limited to certain integer sizes
+ Limited to chosen platforms (Cortex-M3, Cortex-M55)

Institute of Information Science, Academia Sinica

23/24

Conclusions: Limitations

- Limited to certain integer sizes
+ Limited to chosen platforms (Cortex-M3, Cortex-M55)

+ Our code is heavily unrolled

+ May be problematic on the Cortex-M3 due to ROM/flash constraints
+ Performance overhead of re-rolling the code is hopefully small

Institute of Information Science, Academia Sinica

23/24

Conclusions: Limitations

- Limited to certain integer sizes
+ Limited to chosen platforms (Cortex-M3, Cortex-M55)

+ Our code is heavily unrolled

+ May be problematic on the Cortex-M3 due to ROM/flash constraints
+ Performance overhead of re-rolling the code is hopefully small

+ expmod allows some pre-computation (modulus and its inverse in NTT domain)
favouring NTT-based multiplication

 General-purpose modular multiplication will be slower

Institute of Information Science, Academia Sinica 23/24

Conclusions: Limitations

+ How does this translate to other platforms?

« Unclear

+ For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle
umaal) that help schoolbook much more than NTTs

+ Armv8-A/Armv9-A processors would be interesting to look at in the future

Institute of Information Science, Academia Sinica

2424

Conclusions: Limitations

+ How does this translate to other platforms?
» Unclear
+ For example, Arm Cortex-M4 has powerful multiplication instructions (single cycle
umaal) that help schoolbook much more than NTTs
+ Armv8-A/Armv9-A processors would be interesting to look at in the future

« Can we scale this to any size of integers (> 2048)?
+ Unclear

+ Parameters have been carefully picked for the two sizes (2048, 4096)
« General-purpose integer multiplication code is trickier!

Institute of Information Science, Academia Sinica 2424

Thanks!

https://eprint.iacr.org/2022/439
https://github.com/ntt-int-mul/ntt-int-mul-m3
https://gitlab.com/arm-research/security/pgmx

Institute of Information Science, Academia Sinica

https://eprint.iacr.org/2022/439
https://github.com/ntt-int-mul/ntt-int-mul-m3
https://gitlab.com/arm-research/security/pqmx

	Appendix

