Max Planck Institute for Security and Privacy, Bochum, Germany

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime

Vincent Hwang

July 16, 2024

- Why homomorphisms of power-of-two dimensions frequently admit efficient vectorzation?
- Which homomorphisms admit efficient vectorization?
- Vectorization, formally: vectorization-friendliness, permutation-friendliness, Toeplitz matrix-vector product.
 - Driven by implementation experience.
- Polynomial multiplications in NTRU Prime (parameter set ntrulpr761/sntrup761)

$$\frac{\mathbb{Z}_{4591}[x]}{\langle x^{761} - x - 1 \rangle} \cong \mathbb{F}_{4591^{761}}.$$

▶ $R = \mathbb{Z}_{4591}$ unless stated otherwise \longrightarrow elements are stored as halfwords.

Overview of Vector Instruction Sets/Extensions			
	Armv8-A Neon	AVX2	
Architecture	Armv8-A	x86	
# vector registers	32	16	
# bits in each vec.	128	256	
# halfwords in each vec.	8	16	
Vector-by-vector (halfword data)	add./sub./mul.	add./sub./mul.	
Vector-by-scalar (halfword data)	mul.	None	

Vectorization-Friendliness

- A transformation is vectorization-friendly if
 - it amounts to vector-by-vector arithmetic;
 - it results in subproblems of power-of-two dimensions.
- Let v be the number of elements in a vector.
- ► Conceptually, *f* is vectorization-friendly if it operates over chunks of size *v*.
 - $\blacktriangleright \exists f', f = f' \otimes I_v.$
- Formally (see paper for details):
 - $\blacktriangleright M_f = \prod_i (M_{f_i} \otimes I_v) S_{f_i}.$
 - M_f : matrix representation of f.
 - S_{f_i} must be a block diagonal matrix with each block
 - a diagonal matrix or
 - a cyclic/negacyclic shift matrix.
 - Diagonal matrix: component-wise multiplications.
 - Cyclic/negacyclic shift matrix: permutations/memory loads and stores.
- Dimension of f over R must be a multiple of v.

- Principal *n*-th root of unity ω_n :
 - $R = \mathbb{Z}_q$, prime q: n must divide q 1.
- ▶ Radix-2, $n = 2^k$:

Example: Vectorizing Radix-2 Cooley–Tukey

- $\blacktriangleright v | 2^k.$
- $\blacktriangleright R' = R[x]/\langle x^v y \rangle.$
- $\blacktriangleright f = f' \otimes I_v.$
- f operates over R, and f' operates over R'.

Scalar View

Vector View

$$\begin{split} R[x] \Big/ \Big\langle x^{2^{k}} - 1 \Big\rangle \\ f \\ \\ \prod_{i} R[x] \Big/ \Big\langle x^{v} - \omega_{2^{k}/v}^{i} \Big\rangle \end{split}$$

6

Vectorization with vector-by-vector arithmetic (conceptually):

- ► Power-of-two multiple of subproblems of equal power-of-two multiple dimensions.
- Rader-17:
 - ▶ 17 size-96 polynomials.
- ► Truncated Rader-17:
 - ▶ 16 size-96 polynomials.

Rader-17 FFT

- $\blacktriangleright 4591 1 = 2 \cdot 3^3 \cdot 5 \cdot 17 \longrightarrow \exists \omega_{17}, \omega_3, \omega_2.$
- $R[x]/\langle x^{17}-1\rangle \cong \prod_{i=0,\dots,16} R[x]/\langle x-\omega_{17}^i\rangle$, mainly a size-16 cyclic convolution.
- Theory: [Rad68].

- $\blacktriangleright 4591 1 = 2 \cdot 3^3 \cdot 5 \cdot 17 \longrightarrow \exists \omega_{17}, \omega_3, \omega_2.$
- $R[x]/\langle \Phi_{17}(x)\rangle \cong \prod_{i=1,\dots,16} R[x]/\langle x \omega_{17}^i \rangle$ as a size-16 cyclic convolution.
- ► Theory: [Ber23].

Permutation-Friendliness

- ► A transformation *g* is permutation-friendly if it is vectorization-friendly up to suitable interleaving.
- Power-of-two multiple of subproblems of equal power-of-two multiple dimensions.
- ► Rader-17:
 - ▶ 17 size-96 polynomials.
 - Not permutation-friendly.
- Truncated Rader-17:
 - 16 size-96 polynomials.
 - Permutation-friendly.
- Formally, $M_g = \prod_i S_{g_i} M_{g_i}$ (see paper for details).
 - M_g : matrix representation of g.
 - S_{g_i} : an interleaving matrix.
 - M_{g_i} vectorization-friendly.
- Dimension of g over R must be a multiple of v^2 .

$$(a_0 + a_1x + a_2x^2 + a_3x^3) (b_0 + b_1x + b_2x^2 + b_3x^3) \in R[x]/\langle x^4 - \zeta \rangle.$$

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} a_0 & \zeta a_3 & \zeta a_2 & \zeta a_1 \\ a_1 & a_0 & \zeta a_3 & \zeta a_2 \\ a_2 & a_1 & a_0 & \zeta a_3 \\ a_3 & a_2 & a_1 & a_0 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

► Vector-by-scalar multiplications:

$$egin{pmatrix} c_0 \ c_1 \ c_2 \ c_3 \end{pmatrix} = egin{pmatrix} a_0 \ a_1 \ a_2 \ a_3 \end{pmatrix} b_0 + egin{pmatrix} \zeta a_3 \ a_0 \ a_1 \ a_2 \end{pmatrix} b_1 + egin{pmatrix} \zeta a_2 \ \zeta a_3 \ a_0 \ a_1 \end{pmatrix} b_2 + egin{pmatrix} \zeta a_1 \ \zeta a_2 \ \zeta a_3 \ a_0 \end{pmatrix} b_3$$

• Neon vector-by-scalar multiplication instructions for $R[x]/\langle x^{mv}-\zeta\rangle$.

Transformations

- Armv8-A Neon.
 - ► [HLY24]:
 - Rader-17, Good–Thomas, Cooley–Tukey, Bruun.
 - Vector-by-vector mul.
 - Vectorization-friendly but not permutation-friendly.
 - This work:
 - ► Truncated Rader-17, Good–Thomas, Cooley–Tukey, Toeplitz matrix-vector product.
 - Vector-by-scalar mul.
 - Vectorization-friendly + Toepliz matrix-vector product.
- AVX2, vector-by-vector mul.
 - ► [BBCT22]:
 - Schönhage, Nussbaumer.
 - Vectorization-friendly and permutation-friendly.
 - This work:
 - Truncated Rader-17, Good–Thomas, Cooley–Tukey, Bruun.
 - Vectorization-friendly and permutation-friendly.
 - $\frac{1}{4}$ small-dimensional polymul. compared to [BBCT22].
- Survey: https://eprint.iacr.org/2023/1962.

Table: Performance cycles of polynomial multiplications over \mathbb{Z}_{4591} for $\mathtt{sntrup761}.$

AVX2				
	[BBCT22]*	This work	[BBCT22]*	This work
	Haswell		Sk	ylake
mulcore $(\mathbb{Z}_{4591}[x])$	23 460	12 336 (1.90×)	20 070	9778 (2.05×)
$ ext{polymul}\left(rac{\mathbb{Z}_{4591}[x]}{\langle x^{761}-x-1 angle} ight)$	25 356	12760 (1.99×)	21 364	9876 (2.16×)
Neon				
	[HLY24]	This work	[HLY24]*	This work
	Cortex-A72		Apple	M1 Pro
$ t mulcore(\mathbb{Z}_{4591}[x])$	37 475	29 909 (1.25×)	8 1 2 0	6 508 (1.25×)
$\operatorname{polymul}\left(rac{\mathbb{Z}_{4591}[x]}{\langle x^{761}-x-1 angle} ight)$	39788	30 912 (1.29×)	9 0 9 1	6697 (1.36×)

* Our own benchmarks.

Table: Overall performance of our AVX2 implementation on Haswell and Skylake.

AVX2				
	H	laswell	S	kylake
	[BBCT22]	This work	[BBCT22]	This work
Batch key gen.	154 552	136 003 (-12.0%)	129 159	118 939 (-7.9%)
	SUPERCOP	This work	SUPERCOP	This work
Encapsulation	47 464	44 108 (-7.1%)	40 653	36 486 (-10.3%)
Decapsulation	56 064	50 080 (-10.7%)	47 387	41 070 (-13.3%)

Table: Overall performance of our Neon implementation on Cortex-A72 and Apple M1.

Neon				
	Cortex-A72		A	ople M1 Pro
	[HLY24]	This work	[HLY24]	This work
Key generation	6 574 055	6 539 849 (-0.5%)	1813947	1 806 741 (-0.4%)
Encapsulation	150 054	140 107 (-6.6%)	64 924	62 959 (-3.0%)
Decapsulation	159 286	135 184 (-15.1%)	43 778	38 196 (-12.8%)

Take Away

- Many more transformations other than Cooley–Tukey with efficient vectorization.
 - Truncated Rader-17.
- Vectorzation.
 - Vectorization-friendliness.
 - Permutation-friendliness.
 - Toeplitz matrix-vector product.
- Choose a $g \circ f$:
 - With vector-by-vector mul., decide if the all the following hold. Re-choose $g \circ f$ otherwise.
 - ► f vectorization-friendly.
 - ► g permutation-friendly.
 - With vector-by-scalar mul., decide if the all the following hold. Re-choose $g \circ f$ otherwise.
 - ► *f* vectorization-friendly.
 - ▶ g amounts to Toeplitz matrix-vector products.
- Results of polynomial multiplications:
 - ► AVX2 (Haswell and Skylake): 1.90 to 2.16 times faster.
 - ▶ Neon (Cortex-A72 and Apple M1 Pro): 1.25 to 1.36 times faster.

Thanks for listening Paper (IACR ePrint): https://eprint.iacr.org/2023/604 Artifact: https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime_truncation Slides: https://vincentvbh.github.io/slides/ACISP2024_2_97_slide.pdf

- [BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri, *OpenSSLNTRU: Faster post-quantum TLS key exchange*, 31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 845–862.
- [Ber23] Daniel J. Bernstein, *Fast norm computation in smooth-degree abelian number fields*, Research in Number Theory **9** (2023), no. 4, 82.
- [HLY24] Vincent Hwang, Chi-Ting Liu, and Bo-Yin Yang, *Algorithmic Views of Vectorized Polynomial Multipliers – NTRU Prime*, International Conference on Applied Cryptography and Network Security, Springer, 2024, pp. 24–46.
- [Rad68] Charles M. Rader, *Discrete Fourier Transforms When the Number of Data Samples Is Prime*, Proceedings of the IEEE **56** (1968), no. 6, 1107–1108.

Vectorization for NTRU Prime?

17

► Radix-2 Cooley–Tukey.

- $\blacktriangleright 4591 1 = 2 \cdot 3^3 \cdot 5 \cdot 17 \longrightarrow k = 0, 1.$
- Unfortunately, we don't have ω_{2^k} with a high-power 2^k in \mathbb{Z}_{4591} .

	[BBCT22]	[HLY24]	This work
ISA/extension	AVX2	Neon	Neon/AVX2
Domain	$\frac{R[x]}{\langle (x^{1024}+1)(x^{512}-1)\rangle}$	$\frac{R[x]}{\langle x^{1632}-1\rangle}$	$rac{R[x]}{\langle \Phi_{17}(x^{96}) angle}$
FFT	Schönhage	Rader-17 + GT	truncated Rader-17 + GT
Image	$\left(\frac{R[x]}{\langle x^{64}+1\rangle}\right)^{48}$	$\prod_i \frac{R[x]}{\left\langle x^{16} - \omega_{102}^i \right\rangle}$	$\left(\prod rac{R[x]}{\langle x^{16} \pm 1 angle} ight)^{48}$

Table: Summary of vectorization-friendly approaches. GT stands for Good-Thomas.

Comparisons of Permutation-Friendliness to Prior Works

Overview of Permutation-Friendly Approaches with AVX2			
	[BBCT22]	This work	
Domain	$\left(\frac{R[x]}{\langle x^{64}+1\rangle}\right)^{48}$	$\left(\prod rac{R[x]}{\langle x^{16} \pm 1 angle} ight)^{48}$	
FFT	Nussbaumer	CT + Bruun	
Image	$\left(\frac{R[z]}{\langle z^8+1\rangle}\right)^{768}$	$\left(\prod rac{R[x]}{\langle x^8 \pm 1 angle} imes \prod rac{R[x]}{\langle x^8 \pm \sqrt{2}x^4 + 1 angle} ight)^{48}$	
Follow up polymul.	Recursive K	К	
Multiplication instruction	Vector-by-vector	Vector-by-vector	