Max Planck Institute for Security and Privacy, National Taiwan University, and Academia Sinica

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU Prime

Vincent Hwang, Chi-Ting Liu, and Bo-Yin Yang

March 6, 2024

Polynomial multiplications in NTRU Prime (parameter set ntrulpr761/sntrup761)

$$\frac{\mathbb{Z}_{4591}[x]}{\langle x^{761} - x - 1 \rangle} \cong \mathbb{F}_{4591^{761}}.$$

- Compute products in $\mathbb{Z}_{4591}[x]/\langle g \rangle$ with deg $(g) \geq 2 \cdot 761 1 = 1521$.
- Vectorization:
 - Vectors contain power-of-two number of elements.
 - ► High-dimensional power-of-two-multiple transformation.
 - Approaches in this talk:
 - 1. Good–Thomas + Schönhage + Bruun's FFTs.
 - 2. Rader's + Good–Thomas + Bruun's FFTs.
- $R = \mathbb{Z}_{4591}$ unless stated otherwise.

Armv8-A Neon instruction set.

- ► 32 vector registers.
 - Each vector registers holds 128-bit of data $\longrightarrow 8$ coefficients in this talk.
- Component-wise arithmetic:
 - Addition/subtraction: $(a_i) + (b_i) = (a_i + b_i)$
 - ► Various multiplications: $((a_i), (b_i)) \mapsto (a_i b_i \mod 2^{16}), (\left\lfloor \frac{2a_i b_i}{2^{16}} \right\rfloor)$, and more.
- Extending, narrowing, permutation.

Cooley–Tukey FFT

- Principal *n*-th root of unity ω_n :
 - $\blacktriangleright R = \mathbb{Z}_q, \text{ prime } q: n \text{ must divide } q 1.$
- ▶ Radix-2, $n = 2^k$:

• Unfortunately, we don't have ω_{2^k} with a high-power 2^k in \mathbb{Z}_{4591} :

 $\blacktriangleright 4591 - 1 = 2 \cdot 3^3 \cdot 5 \cdot 17 \longrightarrow k = 0, 1.$

Schönhage's and Nussbaumer's FFTs

Schönhage

- 1. Chopping: $x^{32} \mapsto y$.
- 2. Extending: replace $x^{32} y$ by $x^{64} + 1$ (zero-padding).
- 3. Transform with x as the root of unity.
- 4. $(R[x]/\langle x^{64}+1\rangle)^{48}$.
- Nussbaumer works similarly.

[BBCT22]:

$$\frac{R[x]}{\langle (x^{1024}+1)\,(x^{512}-1)\rangle} \stackrel{\text{Schönhage}}{\longrightarrow} \left(\frac{R[x]}{\langle x^{64}+1\rangle}\right)^{48} \stackrel{\text{Nussbaumer}}{\longrightarrow} \left(\frac{R[z]}{\langle z^8+1\rangle}\right)^{48\cdot 16=768} \cdot \frac{R[z]}{\langle z^8+1\rangle} = \frac{1}{\sqrt{2}} \cdot \frac{R[z]}{\langle z^8+1\rangle} =$$

- 1. Schönhage: $1 \times 1536 = 1536 \rightarrow 48 \times 64 = 3072$.
- **2.** Nussbaumer: $48 \times 64 = 3072 \rightarrow 768 \times 8 = 6144$.

- 1. Apply Good–Thomas.
- 2. Replace Nussbaumer by Bruun.

Applying Good–Thomas

7

- ▶ What we know: radix-2 Schönhage introduces radix-2 roots of unity.
- Question: What if there is already a principal 3rd root of unity?
- Apply Good–Thomas first (simplified):

- Good–Thomas.
- Schönhage.
- Size-32 polymuls instead of size-64.

Replacing Nussbaumer by Bruun

8

- What we know: radix-2 Nussbaumer splits $R[x]/\langle x^{32}+1\rangle$ by extending.
 - $R[x]/\langle x^{32}+1\rangle \hookrightarrow (R[x]/\langle x^8+1\rangle)^8$.
- Question: What if $x^{32} + 1$ factors over *R*?
- For q = 4591, $x^{32} + 1$ factors into irreducible trinomials of the form $x^4 + \gamma x^2 1$ over \mathbb{Z}_q .

► Four size-8 polymuls instead of eight.

What We Have Now

► [BBCT22]:

$$\frac{R[x]}{\langle (x^{1024}+1) \, (x^{512}-1) \rangle} \stackrel{\text{Schönhage}}{\hookrightarrow} \left(\frac{R[x]}{\langle x^{64}+1 \rangle} \right)^{48} \stackrel{\text{Nussbaumer}}{\hookrightarrow} 768 \text{ size-8}$$

► Good-Schönhage-Bruun:

$$\frac{R[x]}{\langle x^{1536}-1\rangle} \stackrel{\text{Good-Thomas + Schönhage}}{\longrightarrow} \left(\frac{R[x]}{\langle x^{32}+1\rangle}\right)^{96} \stackrel{\text{Bruun}}{\cong} \textbf{384 size-8}.$$

- 1. Replace Schönhage by Rader.
- 2. Generalize Bruun (omitted).

Replacing Schönhage with Rader

- $\blacktriangleright 4591 1 = 2 \cdot 3^3 \cdot 5 \cdot 17 \longrightarrow \exists \omega_{17}, \omega_3, \omega_2.$
- Size-17 transformation via Rader (size-16 cyclic convolution).
- Our approach

- ► Rader, Good–Thomas.
- Good–Thomas.
- Cooley–Tukey + Bruun for most of the size-16 (omitted).

What We Have Now

► [BBCT22]:

$$\frac{R[x]}{\langle (x^{1024}+1) \, (x^{512}-1) \rangle} \stackrel{\text{Schönhage}}{\to} \left(\frac{R[x]}{\langle x^{64}+1 \rangle} \right)^{48} \stackrel{\text{Nussbaumer}}{\to} 768 \text{ size-8}.$$

▶ Good-Schönhage-Bruun:

$$\frac{R[x]}{\langle x^{1536}-1\rangle} \xrightarrow{\text{Good-Thomas + Schönhage}} \left(\frac{R[x]}{\langle x^{32}+1\rangle}\right)^{96} \stackrel{\text{Bruun}}{\cong} \textbf{384 size-8}.$$

Good-Rader-Bruun:

$$\frac{R[x]}{\langle x^{1632}-1\rangle} \stackrel{\text{Good-Thomas + Rader}}{\cong} \prod_i \frac{R[x]}{\langle x^{16}\pm \omega_{102}^{2i}\rangle} \stackrel{\text{Cooley-Tukey + Bruun}}{\cong} \text{192 size-8 + 6 size-16}.$$

Table: Polymuls. with blow-up factors. Blow-up factor (BF): #coeff. after transformation #coeff. before transformation.

Armv8-A Neon			x86 AVX2				
Implementation	Cycles	BF	Implementation	Cycles	BF		
Big-by-small polynomial multiplications							
Good-Thomas	47 696	$1 \times$	[BBCT22]	16992	$1 \times$		
[Haa21]	242 585	$1 \times$					
Big-by-big polynomial multiplications							
Good-Rader-Bruun	39 788	$1 \times$	[BBCT22]	25113	$4 \times$		
Good-Schönhage-Bruun	50 398	$2\times$					

- Similar transformations, but not covered in this talk (see paper for more details).
- ► Transformations we just went through.
- ► Reducing *#* small-dimensional polymul. is effective.

sntrup761					
Operation	Key generation	Encapsulation	Decapsulation		
Ref	273 598 470	29750035	89 968 342		
Good-Rader-Bruun	6 333 403	147 977	158 233		
Good-Thomas	6 340 758	153 465	182 271		
Good-Schönhage-Bruun	6 345 787	163 305	193 626		
ntrulpr761					
Operation	Key generation	Encapsulation	Decapsulation		
Ref	29 853 635	59 572 637	89 185 030		
[Haa21]	775 472	1 150 294	1 417 394		
Good-Rader-Bruun	260 606	412 629	461 250		
Good-Thomas	269 590	422 102	471 014		
Good-Schönhage-Bruun	272738	436 965	499 559		

[Hwa23] gave a systematic study of vectorization:

- $\blacktriangleright R[x]/\langle \Phi_{17}\left(x^{96}\right)\rangle.$
- ▶ $1.29 \sim 1.36$ times faster compared to Good-Rader-Bruun with Neon.
- $1.99 \sim 2.16$ times faster compared to [BBCT22] with AVX2.

- Cryptographers choose structures admitting efficient implementations.
 - $R[x]/\langle x^{2^k}+1 \rangle$ with $\omega_{2^{k+1}} \in R$ for Cooley–Tukey.
- Vectorization when there is no ω_{2^k} :
 - Prior [BBCT22]: radix-2 Schönhage and Nussbaumer.
 - ► This work: Rader, Good–Thomas, and Bruun.
- Many more choices of polynomial rings with efficient implementations other than Cooley–Tukey.

Thanks for listening Paper (IACR ePrint): https://eprint.iacr.org/2023/1580 Artifact: https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime Slides: https://vincentvbh.github.io/slides/ACNS2024_1_21_slide.pdf

[BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri, OpenSSLNTRU: Faster post-quantum TLS key exchange, 31st USENIX Security Symposium (USENIX Security 22), 2022, https: //www.usenix.org/conference/usenixsecurity22/presentation/bernstein, pp. 845-862.

- [Haa21] Jasper Haasdijk, Optimizing NTRU LPRime on the ARM Cortex A72, 2021, https://github.com/jhaasdijk/KEMobi.
- [Hwa23] Vincent Hwang, Pushing the Limit of Vectorized Polynomial Multiplication for NTRU Prime, https://eprint.iacr.org/2023/604.

For a prime p, $R[x]/\langle x^p - 1 \rangle \cong \prod_i R[x]/\langle x - \omega_p^i \rangle$ can be implemented with the aid of a size-(p-1) cyclic convolution. Consider

$$\begin{pmatrix} \hat{a}_0 \\ \hat{a}_1 \\ \hat{a}_2 \\ \hat{a}_3 \\ \hat{a}_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \omega_5 & \omega_5^2 & \omega_5^3 & \omega_5^4 \\ 1 & \omega_5^2 & \omega_5^4 & \omega_5 & \omega_5^3 \\ 1 & \omega_5^3 & \omega_5 & \omega_5^4 & \omega_5^2 \\ 1 & \omega_5^4 & \omega_5^3 & \omega_5^2 & \omega_5 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}.$$

We have:

$$\begin{pmatrix} \hat{a}_2 - a_0 \\ \hat{a}_4 - a_0 \\ \hat{a}_3 - a_0 \\ \hat{a}_1 - a_0 \end{pmatrix} = \begin{pmatrix} \omega_5 & \omega_5^2 & \omega_5^4 & \omega_5^3 \\ \omega_5^3 & \omega_5 & \omega_5^2 & \omega_5^4 \\ \omega_5^4 & \omega_5^3 & \omega_5 & \omega_5^2 \\ \omega_5^2 & \omega_5^4 & \omega_5^3 & \omega_5 \end{pmatrix} \begin{pmatrix} a_3 \\ a_4 \\ a_2 \\ a_1 \end{pmatrix},$$

a size-4 cyclic convolution of $(\omega_5, \omega_5^3, \omega_5^4, \omega_5^2)$ and (a_3, a_4, a_2, a_1) .