Algorithmic Views of Vectorized Polynomial Multipliers - NTRU Prime

Vincent Hwang, Chi-Ting Liu, and Bo-Yin Yang

March 6, 2024

Goals

- Polynomial multiplications in NTRU Prime (parameter set ntrulpr761/sntrup761)

$$
\frac{\mathbb{Z}_{4591}[x]}{\left\langle x^{761}-x-1\right\rangle} \cong \mathbb{F}_{4591^{761}}
$$

- Compute products in $\mathbb{Z}_{4591}[x] /\langle\boldsymbol{g}\rangle$ with $\operatorname{deg}(\boldsymbol{g}) \geq 2 \cdot 761-1=1521$.
- Vectorization:
- Vectors contain power-of-two number of elements.
- High-dimensional power-of-two-multiple transformation.
- Approaches in this talk:

1. Good-Thomas + Schönhage + Bruun's FFTs.
2. Rader's + Good-Thomas + Bruun's FFTs.

- $R=\mathbb{Z}_{4591}$ unless stated otherwise.

Vectorization

Vectorization

Armv8-A Neon instruction set.

- 32 vector registers.
- Each vector registers holds 128 -bit of data $\longrightarrow 8$ coefficients in this talk.
- Component-wise arithmetic:
- Addition/subtraction: $\left(a_{i}\right)+\left(b_{i}\right)=\left(a_{i}+b_{i}\right)$
- Various multiplications: $\left(\left(a_{i}\right),\left(b_{i}\right)\right) \mapsto\left(a_{i} b_{i} \bmod 2^{16}\right),\left(\left\lfloor\frac{2 a_{i} b_{i}}{2^{16}}\right\rceil\right)$, and more.
- Extending, narrowing, permutation.

Cooley-Tukey FFT

Cooley-Tukey FFT

- Principal n-th root of unity ω_{n} :
- $R=\mathbb{Z}_{q}$, prime q : n must divide $q-1$.
- Radix-2, $n=2^{k}$:

- Unfortunately, we don't have $\omega_{2^{k}}$ with a high-power 2^{k} in \mathbb{Z}_{4591} :
- $4591-1=2 \cdot 3^{3} \cdot 5 \cdot 17 \longrightarrow k=0,1$.

Schönhage's and Nussbaumer's FFTs

Schönhage's and Nussbaumer's FFTs

- Schönhage

1. Chopping: $x^{32} \mapsto y$.
2. Extending: replace $x^{32}-y$ by $x^{64}+1$ (zero-padding).
3. Transform with x as the root of unity.
4. $\left(R[x] /\left\langle x^{64}+1\right\rangle\right)^{48}$.

- Nussbaumer works similarly.

Prior Vectorization

[BBCT22](%5B):

1. Schönhage: $1 \times 1536=1536 \rightarrow 48 \times 64=3072$.
2. Nussbaumer: $48 \times 64=3072 \rightarrow 768 \times 8=6144$.

Removing Nussbaumer

Overview

1. Apply Good-Thomas.
2. Replace Nussbaumer by Bruun.

Applying Good-Thomas

- What we know: radix-2 Schönhage introduces radix-2 roots of unity.
- Question: What if there is already a principal 3rd root of unity?
- Apply Good-Thomas first (simplified):

- Good-Thomas.
- Schönhage.
- Size-32 polymuls instead of size-64.

Replacing Nussbaumer by Bruun

- What we know: radix-2 Nussbaumer splits $R[x] /\left\langle x^{32}+1\right\rangle$ by extending.
- $R[x] /\left\langle x^{32}+1\right\rangle \hookrightarrow\left(R[x] /\left\langle x^{8}+1\right\rangle\right)^{8}$.
- Question: What if $x^{32}+1$ factors over R ?
- For $q=4591, x^{32}+1$ factors into irreducible trinomials of the form $x^{4}+\gamma x^{2}-1$ over \mathbb{Z}_{q}.

- Four size-8 polymuls instead of eight.

What We Have Now

-

\frac{R[x]}{\left\langle\left(x^{1024}+1\right)\left(x^{512}-1\right)\right\rangle} \stackrel{Schönhage}{\hookrightarrow}\left(\frac{R[x]}{\left\langle x^{64}+1\right\rangle}\right) \stackrel{48}{Nussbaumer} 768 size- 8 .
\]

- Good-Schönhage-Bruun:

$$
\frac{R[x]}{\left\langle x^{1536}-1\right\rangle} \stackrel{\text { Good-Thomas + Schönhage }}{\hookrightarrow}\left(\frac{R[x]}{\left\langle x^{32}+1\right\rangle}\right) \stackrel{96}{\text { Bruun }} \leftrightharpoons 384 \text { size-8. }
$$

Removing Schönhage

Overview

1. Replace Schönhage by Rader.
2. Generalize Bruun (omitted).

Replacing Schönhage with Rader

- $4591-1=2 \cdot 3^{3} \cdot 5 \cdot 17 \longrightarrow \exists \omega_{17}, \omega_{3}, \omega_{2}$.
- Size-17 transformation via Rader (size-16 cyclic convolution).
- Our approach

- Rader, Good-Thomas.
- Good-Thomas.
- Cooley-Tukey + Bruun for most of the size-16 (omitted).

What We Have Now

-

\frac{R[x]}{\left\langle\left(x^{1024}+1\right)\left(x^{512}-1\right)\right\rangle} \stackrel{Schönhage}{\hookrightarrow}\left(\frac{R[x]}{\left\langle x^{64}+1\right\rangle}\right)^{48} \stackrel{Nussbaumer}{\hookrightarrow} 768 size-8.
\]

- Good-Schönhage-Bruun:

$$
\frac{R[x]}{\left\langle x^{1536}-1\right\rangle} \stackrel{\text { Good-Thomas + Schönhage }}{\hookrightarrow}\left(\frac{R[x]}{\left\langle x^{32}+1\right\rangle}\right)^{96} \stackrel{\text { Bruun }}{\cong} 384 \text { size-8. }
$$

- Good-Rader-Bruun:

$$
\frac{R[x]}{\left\langle x^{1632}-1\right\rangle} \stackrel{\text { Good-Thomas + Rader }}{\cong} \prod_{i} \frac{R[x]}{\left\langle x^{16} \pm \omega_{102}^{2 i}\right\rangle} \stackrel{\text { Cooley-Tukey + Bruun }}{\cong} 192 \text { size-8 + 6 size-16. }
$$

Results

Polynomial Multiplications

Table: Polymuls. with blow-up factors. Blow-up factor (BF): \#coeff. after transformation \#coeff. before transformation

Armv8-A Neon			x86 AVX2		
Implementation	Cycles	BF	Implementation	Cycles	BF
Big-by-small polynomial multiplications					
Good-Thomas	47696	$1 \times$	[BBCT22](%5B)	16992	$1 \times$
[Haa21]	242585	$1 \times$			
Big-by-big polynomial multiplications					
Good-Rader-Bruun	39788	$1 \times$	[BBCT22](%5B)	25113	$4 \times$
Good-Schönhage-Bruun	50398	$2 \times$			

- Similar transformations, but not covered in this talk (see paper for more details).
- Transformations we just went through.
- Reducing \# small-dimensional polymul. is effective.

Scheme

sntrup761

Operation	Key generation	Encapsulation	Decapsulation
Ref	273598470	29750035	89968342
Good-Rader-Bruun	6333403	147977	158233
Good-Thomas	6340758	153465	182271
Good-Schönhage-Bruun	6345787	163305	193626
ntrulpr761			

Operation	Key generation	Encapsulation	Decapsulation
Ref	29853635	59572637	89185030
[Haa21]	775472	1150294	1417394
Good-Rader-Bruun	260606	412629	461250
Good-Thomas	269590	422102	471014
Good-Schönhage-Bruun	272738	436965	499559

Follow up Work

[Hwa23] gave a systematic study of vectorization:

- $R[x] /\left\langle\Phi_{17}\left(x^{96}\right)\right\rangle$.
- $1.29 \sim 1.36$ times faster compared to Good-Rader-Bruun with Neon.
- $1.99 \sim 2.16$ times faster compared to [BBCT22](%5B) with AVX2.

Take Away

- Cryptographers choose structures admitting efficient implementations.
- $R[x] /\left\langle x^{2^{k}}+1\right\rangle$ with $\omega_{2^{k+1}} \in R$ for Cooley-Tukey.
- Vectorization when there is no $\omega_{2^{k}}$:
- Prior [BBCT22](%5B): radix-2 Schönhage and Nussbaumer.
- This work: Rader, Good-Thomas, and Bruun.
- Many more choices of polynomial rings with efficient implementations other than Cooley-Tukey.

Thanks for listening

Paper (IACR ePrint): https://eprint.iacr.org/2023/1580
Artifact: https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime Slides: https://vincentvbh.github.io/slides/ACNS2024_1_21_slide.pdf

Reference I

[BBCT22](%5B) Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri, OpenSSLNTRU: Faster post-quantum TLS key exchange, 31st USENIX Security Symposium (USENIX Security 22), 2022, https:
//www.usenix.org/conference/usenixsecurity22/presentation/bernstein, pp. 845-862.
[Haa21] Jasper Haasdijk, Optimizing NTRU LPRime on the ARM Cortex - A72, 2021, https://github.com/jhaasdijk/KEMobi.
[Hwa23] Vincent Hwang, Pushing the Limit of Vectorized Polynomial Multiplication for NTRU Prime, https://eprint.iacr.org/2023/604.

Rader's FFT

For a prime $p, R[x] /\left\langle x^{p}-1\right\rangle \cong \prod_{i} R[x] /\left\langle x-\omega_{p}^{i}\right\rangle$ can be implemented with the aid of a size- $(p-1)$ cyclic convolution. Consider

$$
\left(\begin{array}{l}
\hat{a}_{0} \\
\hat{a}_{1} \\
\hat{a}_{2} \\
\hat{a}_{3} \\
\hat{a}_{4}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & \omega_{5} & \omega_{5}^{2} & \omega_{5}^{3} & \omega_{5}^{4} \\
1 & \omega_{5}^{2} & \omega_{5}^{4} & \omega_{5} & \omega_{5}^{3} \\
1 & \omega_{5}^{3} & \omega_{5} & \omega_{5}^{4} & \omega_{5}^{2} \\
1 & \omega_{5}^{4} & \omega_{5}^{3} & \omega_{5}^{2} & \omega_{5}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right) .
$$

We have:

$$
\left(\begin{array}{l}
\hat{a}_{2}-a_{0} \\
\hat{a}_{4}-a_{0} \\
\hat{a}_{3}-a_{0} \\
\hat{a}_{1}-a_{0}
\end{array}\right)=\left(\begin{array}{cccc}
\omega_{5} & \omega_{5}^{2} & \omega_{5}^{4} & \omega_{5}^{3} \\
\omega_{5}^{3} & \omega_{5} & \omega_{5}^{2} & \omega_{5}^{4} \\
\omega_{5}^{4} & \omega_{5}^{3} & \omega_{5} & \omega_{5}^{2} \\
\omega_{5}^{2} & \omega_{5}^{4} & \omega_{5}^{3} & \omega_{5}
\end{array}\right)\left(\begin{array}{l}
a_{3} \\
a_{4} \\
a_{2} \\
a_{1}
\end{array}\right),
$$

a size-4 cyclic convolution of $\left(\omega_{5}, \omega_{5}^{3}, \omega_{5}^{4}, \omega_{5}^{2}\right)$ and $\left(a_{3}, a_{4}, a_{2}, a_{1}\right)$.

