Max Planck Institute for Security and Privacy, Bochum, Germany

Formal Verification of Emulated Floating-Point Arithmetic in
Falcon

Vincent Hwang

September 19, 2024

» Incorrect zeroization.
» Range checking in FFT (formal verification, for the absence of incorrect zeroizations).
» Equivalences between fadd./fsub./fmul. implementations (formal verification).

» | attice-based digital signature selected by NIST.

» Compact signature and public key sizes (compared to another lattice-based winner
Dilithium).
» Floating-point arithmetic in signing.
> FFT
> Falcon tree.
» Fast Fourier sampling.

Incorrect Zeroization in the Emulated Floating-Point Multiplication

Floating-Point Arithmetic

Double-precision in this talk.

1 11 52

S e m

> (0 < e < 2047 (normal values):
(_1)5 26—1075 (252 + IIl))

> Zeros:e=m=0.

» Other values (irrelevant in this work):
» ¢ =0andm# 0: subnormals.
> e = 2047 and m = 0: infinites.
> e =2047 and m # 0: NaNs.

Concerns of Floating-Point Arithmetic

» Not always constant-time.
» FPU does not even exist on some microcontrollers!

Emulating with Integer and Bit-Wise Arithmetic

» Compute with only
» Integer: add./sub./mul.
» Bit-wise: |, &, ~.
» No secret-dependent branches.
» Conditional computations are implemented as

1. computations for all the branches;
2. computations for the selection criteria; and
3. selections of the desired results with bit-wise arithmetic.

Floating-Point Multiplication

» Assume no exceptions: users’ responsibilities.
» Compute the results

» asif aninput is a zero;
» as if both are non-zero, and apply rounding.

» Compute selection criterion from the inputs.
> Select the desired one.

Incorrect Zeroization (Simplified View)

For simplicity, assume inputs are non-zero floats: s0/e0|m0 and s1lel|m1.
1. Compute the integer product (252 + m0) (252 + m1).
2. Normalize to a 55-bit integer zu (round-mode-dependent).
3. Compute the sum e of exponents.
4. Round.
5. Zeroize if too small.
Incorrect zeroization.
» Falcon submission package:

1. Zeroize if (e, zu) is too small (< 271923).
2. Round.

» Issue:

» Rounding could increase (e, zu).

» If both the following hold, the result is incorrectly zeroized.
» (e, zu)istoo small = 0.
> (e, zu) is sufficiently large after rounding = non-zero.

Falcon FFT

Twiddle factors are stored as floats. For example:
> % is stored as 01102211865452045155277 — 3 a float whose product is incorrectly
zeroized.

> (692/2048 (34%) float constants in FFT admit such floats!

Falcon FFT in Signature Generation

» Question: Are non-zero floats even close to +-0?
> The FFT is applied to poly. with integer coeff. drawn from [—2'5,21%).

Interval Arithmetic

» Floating-point add./sub./mul.
» For non-zeros:

» Upper-bound of the abs.
» Lower-bound of the abs. = Tell us the smallest value (in abs.).

Range Checking

1. Model floating-point add/sub/mul with CryptoLine.
2. Compute intervals of intermediate floats with interval arithmetic built upon native FPU.
3. Verify the correctness of input-output intervals w.r.t. CryptoLine modeling.
4. Determine the union of intervals.
If inputs of FFT are integers drawn from [—2!5,21%), then all the intermediate floats have abs.
in
[2776,227(2°% 4 605182448294568)] .

Far away from the smallest (positive) normal value 27192 — -3 incorrect zeroization.

Verification Time

Operation \ Number of instances \ Verification time (avr. / total in seconds)

FP addition 767 0.297886/ 228.478732
FP multiplication 511 2.589009 /1322.983 371

Equivalences Between Implementations

Floating-point add./sub./mul. implementations.

Opt Ref

assembly intuitive
crazy opt

Equivalences Between Implementations in This Work

Floating-point add./sub./mul. implementations.

Armv7-M

This work

assembly
crazy opt

Jasmin

intuitive

Equivalences via CryptoLine Modeling

Floating-point add./sub./mul. implementations.

Armv7-M +——— | CryptoLine| +— Jasmin

assembly intuitive
crazy opt

Verification Time

Programming langauge | Verification time (in seconds)
Floating-point addition

Jasmin 53.946 560
Assembly 59.863976
Floating-point multiplication
Jasmin 57.108 668
Assembly 5.333913

Future Work

» More rounding modes (straightforward).
» More floating-point arithmetic:

» Halving, doubling, flooring, truncating, all straightforward.
» Floating-point divisions, no obvious difficulties but a lot more instructions.

» More float-based operations:

» Falcon tree (requires floating-point divisions).
» Fast Fourier sampling (while-loop, other tooling required).

» More schemes:
» ModFalcon, Mitaka (hybrid sampler).

Thanks for listening
Paper (IACR ePrint): https://eprint.iacr.org/2024/321
Paper (proceedings):
https://link.springer.com/chapter/10.1007/978-981-97-7737-2_7
Artifact: https://github.com/vincentvbh/Float_formal

https://eprint.iacr.org/2024/321
https://link.springer.com/chapter/10.1007/978-981-97-7737-2_7
https://github.com/vincentvbh/Float_formal

CryptoLine

» Domain-specific language for modeling programs.
» Only accept straight-line programs (loops with fixed number of iterations).

» Very close to assembly:
» An assembly instruction — one or more CryptoLine instructions.

» Declarative.
At least two backend formal verification tools.

v

CryptoLine Verification

» Declare what we have and what we want as
» algebraic predicates;
» range predicates.
» Annotations. An algebraic predicate P and a range predicated Q.

> assume P & & Q adds P and Q to the backend tools.

> assert P & & Q asks to verify
> P with the associated computer algebra system (CAS) and
» Q with the associated SMT solver.

» Transfer predicates with assert P & & true; assume true & & P.

Equivalences of Floating-Point Mul. Implementations

1. Translate Armv7-M assembly into CryptoLine.
2. Insert our CryptoLine model of floating-point mul.
3. Verify the equivalences of the two.
» Question: where and what we should declare?
» Bad annotations:
» Verification does not halt.
» Our annotations:

Verify the multi-limb splitting with SMT.

Transfer the range predicates to CAS.

Verify the long product with CAS.

Transfer the algebraic predicates to SMT.

Verify the remaining operations (rounding, zeroizing) with SMT.

vVVYyVYVYY

	Appendix

