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» Incorrect zeroization.
» Range checking in FFT (formal verification, for the absence of incorrect zeroizations).
» Equivalences between fadd./fsub./fmul. implementations (formal verification).






» | attice-based digital signature selected by NIST.

» Compact signature and public key sizes (compared to another lattice-based winner
Dilithium).
» Floating-point arithmetic in signing.
> FFT
> Falcon tree.
» Fast Fourier sampling.



Incorrect Zeroization in the Emulated Floating-Point Multiplication



Floating-Point Arithmetic

Double-precision in this talk.
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> (0 < e < 2047 (normal values):
(_1)5 26—1075 (252 + IIl) )

> Zeros:e=m=0.

» Other values (irrelevant in this work):
» ¢ =0andm# 0: subnormals.
> e = 2047 and m = 0: infinites.
> e =2047 and m # 0: NaNs.



Concerns of Floating-Point Arithmetic

» Not always constant-time.
» FPU does not even exist on some microcontrollers!



Emulating with Integer and Bit-Wise Arithmetic

» Compute with only
» Integer: add./sub./mul.
» Bit-wise: |, &, ~.
» No secret-dependent branches.
» Conditional computations are implemented as

1. computations for all the branches;
2. computations for the selection criteria; and
3. selections of the desired results with bit-wise arithmetic.



Floating-Point Multiplication

» Assume no exceptions: users’ responsibilities.
» Compute the results

» asif aninput is a zero;
» as if both are non-zero, and apply rounding.

» Compute selection criterion from the inputs.
> Select the desired one.




Incorrect Zeroization (Simplified View)

For simplicity, assume inputs are non-zero floats: s0/e0|m0 and s1lel|m1.
1. Compute the integer product (252 + m0) (252 + m1).
2. Normalize to a 55-bit integer zu (round-mode-dependent).
3. Compute the sum e of exponents.
4. Round.
5. Zeroize if too small.
Incorrect zeroization.
» Falcon submission package:

1. Zeroize if (e, zu) is too small (< 271923).
2. Round.

» Issue:

» Rounding could increase (e, zu).

» If both the following hold, the result is incorrectly zeroized.
» (e, zu)istoo small = 0.
> (e, zu) is sufficiently large after rounding = non-zero.






Falcon FFT

Twiddle factors are stored as floats. For example:
> % is stored as 01102211865452045155277 — 3 a float whose product is incorrectly
zeroized.

> (692/2048 (34%) float constants in FFT admit such floats!






Falcon FFT in Signature Generation

» Question: Are non-zero floats even close to +-0?
> The FFT is applied to poly. with integer coeff. drawn from [—2'5,21%).



Interval Arithmetic

» Floating-point add./sub./mul.
» For non-zeros:

» Upper-bound of the abs.
» Lower-bound of the abs. = Tell us the smallest value (in abs.).




Range Checking

1. Model floating-point add/sub/mul with CryptoLine.
2. Compute intervals of intermediate floats with interval arithmetic built upon native FPU.
3. Verify the correctness of input-output intervals w.r.t. CryptoLine modeling.
4. Determine the union of intervals.
If inputs of FFT are integers drawn from [—2!5,21%), then all the intermediate floats have abs.
in
[2776,227(2°% 4 605182448294568)] .

Far away from the smallest (positive) normal value 27192 — -3 incorrect zeroization.



Verification Time

Operation \ Number of instances \ Verification time (avr. / total in seconds)

FP addition 767 0.297886/ 228.478732
FP multiplication 511 2.589009 /1322.983 371







Equivalences Between Implementations

Floating-point add./sub./mul. implementations.

Opt Ref

assembly intuitive
crazy opt



Equivalences Between Implementations in This Work

Floating-point add./sub./mul. implementations.

Armv7-M

This work

assembly
crazy opt

Jasmin

intuitive




Equivalences via CryptoLine Modeling

Floating-point add./sub./mul. implementations.

Armv7-M +——— | CryptoLine| +— Jasmin

assembly intuitive
crazy opt



Verification Time

Programming langauge | Verification time (in seconds)
Floating-point addition

Jasmin 53.946 560
Assembly 59.863976
Floating-point multiplication
Jasmin 57.108 668
Assembly 5.333913




Future Work

» More rounding modes (straightforward).
» More floating-point arithmetic:

» Halving, doubling, flooring, truncating, all straightforward.
» Floating-point divisions, no obvious difficulties but a lot more instructions.

» More float-based operations:

» Falcon tree (requires floating-point divisions).
» Fast Fourier sampling (while-loop, other tooling required).

» More schemes:
» ModFalcon, Mitaka (hybrid sampler).



Thanks for listening
Paper (IACR ePrint): https://eprint.iacr.org/2024/321
Paper (proceedings):
https://link.springer.com/chapter/10.1007/978-981-97-7737-2_7
Artifact: https://github.com/vincentvbh/Float_formal


https://eprint.iacr.org/2024/321
https://link.springer.com/chapter/10.1007/978-981-97-7737-2_7
https://github.com/vincentvbh/Float_formal

CryptoLine

» Domain-specific language for modeling programs.
» Only accept straight-line programs (loops with fixed number of iterations).

» Very close to assembly:
» An assembly instruction — one or more CryptoLine instructions.

» Declarative.
At least two backend formal verification tools.

v



CryptoLine Verification

» Declare what we have and what we want as
» algebraic predicates;
» range predicates.
» Annotations. An algebraic predicate P and a range predicated Q.

> assume P & & Q adds P and Q to the backend tools.

> assert P & & Q asks to verify
> P with the associated computer algebra system (CAS) and
» Q with the associated SMT solver.

» Transfer predicates with assert P & & true; assume true & & P.



Equivalences of Floating-Point Mul. Implementations

1. Translate Armv7-M assembly into CryptoLine.
2. Insert our CryptoLine model of floating-point mul.
3. Verify the equivalences of the two.
» Question: where and what we should declare?
» Bad annotations:
» Verification does not halt.
» Our annotations:

Verify the multi-limb splitting with SMT.

Transfer the range predicates to CAS.

Verify the long product with CAS.

Transfer the algebraic predicates to SMT.

Verify the remaining operations (rounding, zeroizing) with SMT.
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