
Max Planck Institute for Security and Privacy, Bochum, Germany

Formal Verification of Emulated Floating-Point Arithmetic in
Falcon

Vincent Hwang

September 19, 2024

1

Goals

▶ Incorrect zeroization.
▶ Range checking in FFT (formal verification, for the absence of incorrect zeroizations).
▶ Equivalences between fadd./fsub./fmul. implementations (formal verification).

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

Falcon

2

Falcon

▶ Lattice-based digital signature selected by NIST.
▶ Compact signature and public key sizes (compared to another lattice-based winner

Dilithium).
▶ Floating-point arithmetic in signing.

▶ FFT
▶ Falcon tree.
▶ Fast Fourier sampling.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

Incorrect Zeroization in the Emulated Floating-Point Multiplication

3

Floating-Point Arithmetic

Double-precision in this talk.

1 11 52

s e m

▶ 0 < e < 2047 (normal values):

(−1)
s
2e−1075

(
252 + m

)
.

▶ Zeros: e = m = 0.
▶ Other values (irrelevant in this work):

▶ e = 0 and m ̸= 0: subnormals.
▶ e = 2047 and m = 0: infinites.
▶ e = 2047 and m ̸= 0: NaNs.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

4

Concerns of Floating-Point Arithmetic

▶ Not always constant-time.
▶ FPU does not even exist on some microcontrollers!

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

5

Emulating with Integer and Bit-Wise Arithmetic

▶ Compute with only
▶ Integer: add./sub./mul.
▶ Bit-wise: |,&,̂ ,∼.

▶ No secret-dependent branches.
▶ Conditional computations are implemented as

1. computations for all the branches;
2. computations for the selection criteria; and
3. selections of the desired results with bit-wise arithmetic.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

6

Floating-Point Multiplication

▶ Assume no exceptions: users’ responsibilities.
▶ Compute the results

▶ as if an input is a zero;
▶ as if both are non-zero, and apply rounding.

▶ Compute selection criterion from the inputs.
▶ Select the desired one.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

7

Incorrect Zeroization (Simplified View)

For simplicity, assume inputs are non-zero floats: s0|e0|m0 and s1|e1|m1.
1. Compute the integer product

(
252 + m0

) (
252 + m1

)
.

2. Normalize to a 55-bit integer zu (round-mode-dependent).
3. Compute the sum e of exponents.
4. Round.
5. Zeroize if too small.

Incorrect zeroization.
▶ Falcon submission package:

1. Zeroize if (e, zu) is too small (< 2−1023).
2. Round.

▶ Issue:
▶ Rounding could increase (e, zu).
▶ If both the following hold, the result is incorrectly zeroized.

▶ (e, zu) is too small =⇒ 0.
▶ (e, zu) is sufficiently large after rounding =⇒ non-zero.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

Does it matter?

8

Falcon FFT

Twiddle factors are stored as floats. For example:
▶ 1√

2
is stored as 0|1022|1865452045155277 =⇒ ∃ a float whose product is incorrectly

zeroized.
▶ 692/2048 (34%) float constants in FFT admit such floats!

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

Range Checking

9

Falcon FFT in Signature Generation

▶ Question: Are non-zero floats even close to ±0?
▶ The FFT is applied to poly. with integer coeff. drawn from

[
−215, 215

)
.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

10

Interval Arithmetic

▶ Floating-point add./sub./mul.
▶ For non-zeros:

▶ Upper-bound of the abs.
▶ Lower-bound of the abs. =⇒ Tell us the smallest value (in abs.).

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

11

Range Checking

1. Model floating-point add/sub/mul with CryptoLine.
2. Compute intervals of intermediate floats with interval arithmetic built upon native FPU.
3. Verify the correctness of input-output intervals w.r.t. CryptoLine modeling.
4. Determine the union of intervals.

If inputs of FFT are integers drawn from
[
−215, 215

)
, then all the intermediate floats have abs.

in [
2−476, 227(252 + 605182448294568)

]
.

Far away from the smallest (positive) normal value 2−1023 =⇒ ¬∃ incorrect zeroization.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

12

Verification Time

Operation Number of instances Verification time (avr. / total in seconds)
FP addition 767 0.297 886 / 228.478 732
FP multiplication 511 2.589 009 / 1 322.983 371

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

Equivalence Proofs

13

Equivalences Between Implementations

Floating-point add./sub./mul. implementations.

Opt Ref

assembly
crazy opt

intuitive

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

14

Equivalences Between Implementations in This Work

Floating-point add./sub./mul. implementations.

Armv7-M Jasmin
This work

assembly
crazy opt

intuitive

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

15

Equivalences via CryptoLine Modeling

Floating-point add./sub./mul. implementations.

Armv7-M CryptoLine Jasmin

assembly
crazy opt

intuitive

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

16

Verification Time

Programming langauge Verification time (in seconds)
Floating-point addition

Jasmin 53.946 560
Assembly 59.863 976

Floating-point multiplication
Jasmin 57.108 668
Assembly 5.333 913

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

17

Future Work

▶ More rounding modes (straightforward).
▶ More floating-point arithmetic:

▶ Halving, doubling, flooring, truncating, all straightforward.
▶ Floating-point divisions, no obvious difficulties but a lot more instructions.

▶ More float-based operations:
▶ Falcon tree (requires floating-point divisions).
▶ Fast Fourier sampling (while-loop, other tooling required).

▶ More schemes:
▶ ModFalcon, Mitaka (hybrid sampler).

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

Thanks for listening
Paper (IACR ePrint): https://eprint.iacr.org/2024/321

Paper (proceedings):
https://link.springer.com/chapter/10.1007/978-981-97-7737-2_7

Artifact: https://github.com/vincentvbh/Float_formal

https://eprint.iacr.org/2024/321
https://link.springer.com/chapter/10.1007/978-981-97-7737-2_7
https://github.com/vincentvbh/Float_formal

18

CryptoLine

▶ Domain-specific language for modeling programs.
▶ Only accept straight-line programs (loops with fixed number of iterations).
▶ Very close to assembly:

▶ An assembly instruction → one or more CryptoLine instructions.
▶ Declarative.
▶ At least two backend formal verification tools.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

19

CryptoLine Verification

▶ Declare what we have and what we want as
▶ algebraic predicates;
▶ range predicates.

▶ Annotations. An algebraic predicate P and a range predicated Q.
▶ assume P & & Q adds P and Q to the backend tools.
▶ assert P & & Q asks to verify

▶ P with the associated computer algebra system (CAS) and
▶ Q with the associated SMT solver.

▶ Transfer predicates with assert P & & true; assume true & & P.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

20

Equivalences of Floating-Point Mul. Implementations

1. Translate Armv7-M assembly into CryptoLine.
2. Insert our CryptoLine model of floating-point mul.
3. Verify the equivalences of the two.

▶ Question: where and what we should declare?
▶ Bad annotations:

▶ Verification does not halt.
▶ Our annotations:

▶ Verify the multi-limb splitting with SMT.
▶ Transfer the range predicates to CAS.
▶ Verify the long product with CAS.
▶ Transfer the algebraic predicates to SMT.
▶ Verify the remaining operations (rounding, zeroizing) with SMT.

Vincent Hwang | Formal Verification of Emulated Floating-Point Arithmetic in Falcon

	Appendix

