National Taiwan University, Academia Sinica, and Max Planck Institute for Security and Privacy

Algorithmic Views of Vectorized Polynomial Multipliers - NTRU

Han-Ting Chen, Yi-Hua Chung, Vincent Hwang, and Bo-Yin Yang

December 11, 2023

Goals

- Polynomial multiplications in

$$
\frac{\mathbb{Z}_{2^{k}}[x]}{\left\langle x^{n}-1\right\rangle}
$$

for a prime n used in NTRU.

- ntruhps2048677: $\mathbb{Z}_{2^{11}}[x] /\left\langle x^{677}-1\right\rangle$.
- ntruhrss701: $\mathbb{Z}_{2^{13}}[x] /\left\langle x^{701}-1\right\rangle$.
- Toom-5 requiring 2^{-3}.
- Vectorization:
- Vector-by-vector multiplications: standard vectorization.
- Vector-by-scalar multiplications: Toeplitz matrix-vector product \longrightarrow save permutations.

Toom-Cook

Toom-Cook

How to compute $\boldsymbol{a} \boldsymbol{b} \in R[x]$ from $\boldsymbol{a}, \boldsymbol{b} \in R[x]_{<k}$ with Toom- k ?

1. Choose $\left\{s_{0}, \ldots, s_{2 k-2}\right\} \subset \mathbb{Q} \cup\{\infty\}$
2. Apply $R[x]_{<k} \hookrightarrow R[x] /\left\langle\prod_{i}\left(x-s_{i}\right)\right\rangle \cong \prod_{i} R[x] /\left\langle x-s_{i}\right\rangle$.
3. $R[x]_{<n} \hookrightarrow R[x] /\left\langle x^{\frac{n}{k}}-y\right\rangle[y]_{<k} \hookrightarrow R[x] /\langle\boldsymbol{g}\rangle[y]_{<k}$ with $\operatorname{deg}(\boldsymbol{g}) \geq \frac{2 n}{k}-1$.
4. $R=\mathbb{Z}_{2^{k}}$:

- We are not guaranteed to have an isomorphism over $\mathbb{Z}_{2}{ }^{k}$.
- Formally, localization of a commutative ring.
- In practice, monomorphism suffices:
- Identify the smallest 2^{-m} required for the correctness over \mathbb{Q}.
- Compute the 2^{m}-multiple of the result entirely over $\mathbb{Z}_{2^{k+m}} \longrightarrow$ monomorphism.
- Divide by $2^{m} \longrightarrow$ right-shift m bits.

5. NTRU with 16 -bit arithmetic:

- ntruhps2048677: $R=\mathbb{Z}_{2^{11}}$, we can adjoin up to 2^{-5}.
- ntruhrss701: $R=\mathbb{Z}_{2^{13}}$, we can adjoin up to 2^{-3}.

Neon Vector Instruction Set

Neon Vector Instruction Set

- 32 vector registers.
- Each vector registers holds 128 -bit of data $\longrightarrow 8$ coefficients in our context.
- Arithmetic: component-wise addition/subtraction and:
- Vector-by-vector multiplication: component-wise multiplication.
- Vector-by-scalar multiplication: multiply a vector by a scalar (from a lane), and return a vector.
- Extending, narrowing, permutation instructions.

Neon-Optimized Toom-Cook

Neon-Optimized Toom-Cook

- 32 registers \longrightarrow doubly many registers compared to existing well-studied assembly/intrinsics-optimized works (Armv7-M, AVX2).
- Existing works: Toom-2 (Karatsuba): 1; Toom-3: 2^{-1}; Toom-4: 2^{-3}.
- Toom-4 \rightarrow Toom-5?
- Register pressure: \checkmark
- $\{0, \pm 1, \pm 2, \pm 3,4, \infty\}$ vs $\left\{0, \pm 1, \pm 2, \pm \frac{1}{2}, 3, \infty\right\}$: the former requires 2^{-4} and the later requires 2^{-3}.
- ntruhps2048677:
- $R[x]_{<720} \xrightarrow{\text { Toom-5 }}\left(R[x]_{<144}\right)^{9} \xrightarrow{\text { Toom-3 }}\left(R[x]_{<48}\right)^{45} \xrightarrow{\text { Toom-3 }}\left(R[x]_{<16}\right)^{225} \xrightarrow{\text { Toom-2 }}\left(R[x]_{<8}\right)^{675}$.
- $2^{-3} \cdot 2^{-1} \cdot 2^{-1} \cdot 1=2^{-5}$.
- Replace $R=\mathbb{Z}_{2^{11}}$ by $\mathbb{Z}_{2^{16}}$ in the above to adjoin 2^{-5}.

Toeplitz Matrix-Vector Product

Toeplitz Matrices

$$
M=\left(\begin{array}{ccccc}
a_{n-1} & a_{n-2} & \cdots & a_{1} & a_{0} \\
a_{n} & a_{n-1} & \cdots & a_{2} & a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m+n-3} & a_{m+n-4} & \cdots & a_{m-1} & a_{m-2} \\
a_{m+n-2} & a_{m+n-3} & \cdots & a_{m} & a_{m-1}
\end{array}\right) \text {, for all possible } i, j, M_{i, j}=M_{i+1, j+1}
$$

Denote $M=$ Toeplitz $_{m \times n}\left(a_{m+n-2}, \ldots, a_{0}\right)$.

Toeplitz Matrix-Vector Product (TMVP, Small-Dimensional)

Compute $\left(\begin{array}{cccc}a_{0} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ a_{1} & a_{0} & a_{1}^{\prime} & a_{2}^{\prime} \\ a_{2} & a_{1} & a_{0} & a_{1}^{\prime} \\ a_{3} & a_{2} & a_{1} & a_{0}\end{array}\right)\left(\begin{array}{l}b_{0} \\ b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ via vector-by-scalar multiplications.

Figure: Vector-by-scalar multiplication, a degeneration of outer product.

Computing via TMVP

1. Interprate the computational problem as a TMVP.

- Multiplying in $R[x] /\left\langle x^{n}-1\right\rangle$ can be regarded as a TMVP of dimension $\geq n$.

2. Map small-dimensional TMVP to vector-by-scalar multiplications (previous slide).
3. Pick an f with $\boldsymbol{a} \boldsymbol{b}=f^{-1}\left(f_{k}(\boldsymbol{a}) f_{k}(\boldsymbol{b})\right) \in R[x], f_{k}:=\left.f\right|_{R[x]_{<k}}, f^{-1}: f\left(R[x]_{<k}\right) \rightarrow R[x]$.
4. We have Toeplitz $(-)(\boldsymbol{a})=\operatorname{rev} \circ f_{k}^{*} \circ\left(\boldsymbol{b}^{\prime} \mapsto f_{k}(\boldsymbol{a}) \boldsymbol{b}^{\prime}\right)^{*} \circ\left(f^{-1}\right)^{*}$.

- Complexity is almost the same as $\boldsymbol{a} \boldsymbol{b}=f^{-1}\left(f_{k}(\boldsymbol{a}) f_{k}(\boldsymbol{b})\right)$.
- Toeplitz $(-)$ (a) decomposes into suitable TMVPs even if f doesn't result in suitable TMVPs.
- Suitable TMVP?
- Example: $\left(\begin{array}{ll}a_{1} & a_{0} \\ a_{2} & a_{1}\end{array}\right)$.
- Counter example: $\left(\begin{array}{cc}a_{0} & 0 \\ a_{1} & a_{0} \\ 0 & a_{1}\end{array}\right),\left(\begin{array}{cc}a_{0} & a_{1} \\ a_{1} & a_{0}+\sqrt{2} a_{1}\end{array}\right)$.
- Suppose f doesn't result in suitable TMVPs:
- Direct translation into implementation: permutations + vector-by-vector multiplications.
- Toeplitz: vector-by-scalar multiplications.

Comparisons of Strategies

Comparisons of Strategies

We track the subproblem sizes of algorithms used in ntruhps2048677 works.

- [IKPC22], Toeplitz with Toom-Cook:

$$
R[x]_{<720} \xrightarrow{4 \rightarrow 7} R[x]_{<180} \xrightarrow{3 \rightarrow 5} R[x]_{<60} \xrightarrow{3 \rightarrow 5} R[x]_{<20} \xrightarrow{2 \rightarrow 3} R[x]_{<10}
$$

- [NG21], Toom-Cook:

$$
R[x]_{<720}{ }^{3 \rightarrow 5} R[x]_{<240} \xrightarrow{4 \rightarrow 7} R[x]_{<60} \xrightarrow{2 \rightarrow 3} R[x]_{<30}{ }^{2 \rightarrow 3} R[x]_{<15}
$$

- This work, Toeplitz with Toom-Cook:

$$
R[x]_{<720} \xrightarrow{5 \rightarrow 9} R[x]_{<144} \xrightarrow{3 \rightarrow 5} R[x]_{<48} \xrightarrow{3 \rightarrow 5} R[x]_{<16} \xrightarrow{2 \rightarrow 3} R[x]_{<8}
$$

For ntruhrss701, the Toom-3 for Toeplitz is replaced by 3-way Karatsuba (this doesn't require dividing by 2^{-k}).

Results

Polynomial Multiplications

Table: Overview of polymuls.

	ntruhps2048677	ntruhrss701
Implementation	Cycles	
[NG21]	58286	70061
Toeplitz-TC	26784	31478
Toom-Cook	37318	-

- $58286 \rightarrow 37$ 318: Toom-4 \rightarrow Toom-5 + Toom-2 \rightarrow Toom-3 + memory opt.
- $37318 \rightarrow 26$ 784: Convert Toom-Cook into the Toeplitz form.

Polynomial Inversions

Idea for arithmetic in $\mathbb{Z}_{2}, \mathbb{Z}_{3}$: bit-level computations in batch.

Table: Performance of inversions and sorting network in NTRU.

Operation	Ref		Ours	Ref		Ours
	ntruhps2048677		ntruhrss701			
poly_Rq_inv	3506621	341482	3938579	392478		
poly_R2_inv	2791906	136776	3175330	140290		
poly_S3_inv	4153823	482005	4765259	503590		
crypto_sort_int32	104691	17819	-	-		

Scheme

Table: Overall cycles of ntruhps2048677 and ntruhrss701. K stands for key generation, E stands for encapsulation, and D stands for decapsulation.

	ntruhps2048677			ntruhrss701		
Operation	\mathbf{K}	\mathbf{E}	\mathbf{D}	\mathbf{K}	\mathbf{E}	\mathbf{D}
Ref	8245039	227980	331274	9397305	134737	365558
[NG21]	7686272	196526	212265	8599610	87380	221986
Toeplitz-TC	1002187	79213	120208	1076810	59625	142174
Toom-Cook	1127089	88037	146422	-	-	-
Improvement	inv. $\left(\mathbb{Z}_{2}\right)$ $>$ polymul. $>$ sort.	sort.	polymul.	inv. $\left(\mathbb{Z}_{2}\right)$ $>$ polymul.	polymul.	polymul.

Thanks for listening
Paper (IACR ePrint): https://eprint.iacr.org/2023/1637
Artifact: https://github.com/vector-polymul-ntru-ntrup/NTRU

Reference

[IKPC22] Írem Keskinkurt Paksoy and Murat Cenk, Faster NTRU on ARM Cortex-M4 with TMVP-based multiplication, https://ia.cr/2022/300.
[NG21] Duc Tri Nguyen and Kris Gaj, Fast NEON-based multiplication for lattice-based NIST post-quantum cryptography finalists, Post-Quantum Cryptography: 12th International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20-22, 2021, Proceedings, 2021, https://link.springer.com/chapter/10.1007/978-3-030-81293-5_13, pp. 234-254.

TMVP (Large-Dimensional) I

$\boldsymbol{a} \in R[x]_{<n}, \boldsymbol{g}=x^{n}-1 \in R[x], R[x] /\langle\boldsymbol{g}\rangle=R[x]_{<n}$ as modules. Suppose we have

$$
\boldsymbol{b} \mapsto \boldsymbol{a} \boldsymbol{b}: R[x]_{<n} \rightarrow R[x]_{<2 n-1} .
$$

- A straightforward way:

$$
\left\{\begin{array}{ccccc}
R[x] /\langle\boldsymbol{g}\rangle & \rightarrow & R[x]_{<2 n-1} & \rightarrow & R[x] /\langle\boldsymbol{g}\rangle \\
\boldsymbol{b} & \mapsto & \boldsymbol{a b} & \mapsto & \boldsymbol{a b} \bmod \boldsymbol{g}
\end{array}\right.
$$

- Downside: may not result in small-dimensional TMVP \longrightarrow vector-by-vector + extra permutations.
- TMVP: implement $\boldsymbol{b} \mapsto \boldsymbol{a b} \bmod \boldsymbol{g}$ from $(\boldsymbol{b} \mapsto \boldsymbol{a} \boldsymbol{b})^{*}$.

TMVP (Large-Dimensional) II

$$
\begin{aligned}
& \operatorname{Expand}_{n \rightarrow n, 1}=\left(b_{i}\right) \mapsto\left(b_{n-1}, \ldots, b_{0}, b_{n-1}, \ldots, b_{1}\right) . \\
& R[x]_{<n} \xrightarrow{\boldsymbol{b} \mapsto \boldsymbol{a} \boldsymbol{b}} R[x]_{<2 n-1} \\
& \left(R^{n}\right)^{*} \longleftarrow \stackrel{(\boldsymbol{b} \mapsto \boldsymbol{a} \boldsymbol{b})^{*}}{\longleftarrow}\left(R^{2 n-1}\right)^{*}
\end{aligned}
$$

- Generalize to Expand ${ }_{n \rightarrow n^{\prime}, \zeta}$ (see Sections 4.3 and 4.5 of the paper).

TMVP (Large-Dimensional) III

- rev $\circ(b \mapsto a b)^{*}=b^{\prime} \mapsto \operatorname{Toeplitz}\left(b^{\prime}\right)(a)$
- Suppose $\exists f, \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a} \boldsymbol{b}=f^{-1}\left(f_{n}(\boldsymbol{a}) f_{n}(\boldsymbol{b})\right), f_{n}:=f_{R_{<n}[x]}$.
- If $\boldsymbol{b} \mapsto \boldsymbol{a} \boldsymbol{b}=f^{-1} \circ\left(f_{n}(\boldsymbol{b}) \mapsto f_{n}(\boldsymbol{a}) f_{n}(\boldsymbol{b})\right) \circ f_{n}$ in a block matrix view, then

$$
\boldsymbol{b}^{\prime} \mapsto \operatorname{Toeplitz}\left(\boldsymbol{b}^{\prime}\right)(\boldsymbol{a})=\operatorname{rev} \circ f_{n}^{*} \circ\left(f_{n}(\boldsymbol{b}) \mapsto f_{n}(\boldsymbol{a}) f_{n}(\boldsymbol{b})\right)^{*} \circ f^{-1 *}
$$

also in a block matrix view.

- There is always such a block matrix view. Why? Each entries is a 1×1 block matrix.
- Usually,
- factors into a series of homomorphisms.
- Block sizes decrease gradually (instead of dropping from n to 1 directly).

