
Max Planck Institute for Security and Privacy, Kookmin University, Kookmin University

Multiplying Polynomials without Powerful Multiplication
Instructions

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo

September 15

1

Polynomial Multiplications

▶ NTT-friendly rings.
▶ Prime moduli.
▶ Composite moduli.

▶ NTT-unfriendly rings.
▶ Over Z2k .
▶ Multiple NTTs + CRT.
▶ NTT over large NTT-friendly rings.
▶ Addition-only NTT (Schönhage, Nussbaumer).

Optimize on platforms with expensive high/long multiplications.
▶ NTT-friendly rings with prime moduli:

▶ Generalized Barrett modular multiplication.
▶ NTT-unfriendly rings

▶ Nussbaumer over Z2k .
▶ Revise cost analysis.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

2

Dilithium and Cortex-M3

Dilithium (ML-DSA now)
▶ NIST post-quantum cryptography standard (FIPS 204).
▶ Dilithium NTT: Modular arithmetic with the prime modulus q = 223 − 213 + 1.

Cortex-M3
▶ Input-dependent-time long multiplication instructions.
▶ Emulate long/high multiplications with

▶ low multiplication instructions, and
▶ addition/logical instructions for merging and carrying.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

Polynomial Multiplications over NTT-friendly Prime Moduli:
Generalizing Barrett Multiplication

3

Multiplication Instructions

R is a power of two, 232 on Cortex-M3.

a b

Long 7→ ab

Low 7→ ab mod R

High 7→
⌊
ab
R

⌋
Long

(emulated from low)

7→ ab

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

4

Barrett Multiplication

Modulus q < R, compute c ≡ ab mod q with a signed modular multiplication.
▶ Long-multiply and then reduce: Montgomery, and more.
▶ Barrett: Approximate with a q-multiple with equal high halve and then subtract.

▶ High part of the long-products can be skipped.

Approximating with a q-multiple.

ab mod q = ab−
⌊
ab

q

⌉
q.

For an z ∈ Z,
∣∣∣z − ⌊

ab
q

⌉∣∣∣ ≤ δ −→ |(ab− zq)− ab mod q| ≤ δq.

Let b′ =
⌊
bR
q

⌉
be a precomputed constant.

▶ Barrett: z =
⌊
ab′

R

⌉
−→ δ ≤ 1.

▶ This work: Relax δ for efficiency.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

5

Generalized Barrett Multiplication (2-Limb)

Originally, compute ab−
⌊
ab′

R

⌉
q with

⌊
ab′

R

⌉
as:

+

0.5R

Instead, compute ab−
r

ab′

R

z
q with

r
ab′

R

z
as:

+

0.5R

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

6

A Bit More Math

▶ b′ =
⌊
bR
q

⌉
.

▶ For a δ > 0, δ-integer approximation JK: ∀r ∈ R, |r − JrK| ≤ δ.

▶ For a b, write bl + bh
√

R =
⌊
bR
q

⌉
. Define JKb as

∀r ∈ R, JrKb := ⌊
albh√

R

⌋
+

⌊
ahbl√

R

⌋
+ ahbh

where al + ah
√

R = rR
b bR

q e
, bl + bh

√
R =

⌊
bR
q

⌉
.

▶ Obviously, |JrKb − r| < 3 (see previous slide).
▶ |JrKb − bre| < 3 (see paper).

▶
∣∣∣(ab− r

ab′

R

z
b
q
)
− ab mod q

∣∣∣ ≤ 3q.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

7

Results of Modular Multiplications

Plain multiplication
Multiplication operation Work Cycle
Long (variable-time) [ARM10] 3−7
Long (constant-time, non-generic) [GKS20] 11
Long (constant-time) [GKS20] 12

Modular multiplication (constant-time)
Montgomery multiplication [GKS20] 23
Barrett multiplication (approximate) This work 12 (1.92)

Modular multiplication (variable-time)
Montgomery multiplication [GKS20] 9−16
Barrett multiplication (floor) This work 6−8 (1.13−2.67)

Table: Overview of multiplication operations with 32-bit input values on Cortex-M3. The cycles are
obtained by summing up the instruction timings from the manual [ARM10].

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

8

Results of NTTs/iNTTs and Matrix-Vector Multiplications

Table: Performance Cycles of Dilithium NTT/iNTT on Cortex-M3.

Constant-time Variable-time
[GKS20] This work [GKS20] This work

NTT 33 025 21 876 (1.51) 19 347 15 985 (1.21)
iNTT 36 609 26 524 (1.38) 21 006 19 067 (1.10)

Table: Performance Cycles of the Matrix-Vector Multiplications for Dilithium on Cortex-M3.

Security Constant-time Variable-time
level [GKS20] This work [GKS20] This work
II 414k 242k (1.71) 240k 176k (1.36)
III 639k 371k (1.72) 370k 267k (1.39)
V 999k 566k (1.77) 578k 411k (1.41)

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

Polynomial Multiplications over NTT-Unfriendly Moduli:
Nussbaumer over Z2k

9

Cooley–Tukey and Nussbaumer

lg = log2. Consider R[x]/〈xn + 1〉 , n = 22
k

for k ∈ Z≥0.
▶ Cooley–Tukey

▶ R: NTT-friendly ring containing n−1.
▶ Multiplication-based.
▶ Rn.
▶ O (n lg n) multiplications, O (n lg n) additions.

▶ Nussbaumer
▶ R: arbitrary ring containing n−1.
▶ Addition-based.
▶ RO(n lgn).
▶ 0 multiplications, O (n lg n lg lg n) additions.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

10

A More Practical Cost Analysis

1. Transform until dimension ≤ t, a platform-dependent constant.
2. Multiply with tα multiplications for an 1 ≤ α ≤ 2.

Table: Arithmetic cost of Cooley–Tukey and Nussbaumer FFTs for multiplying two size-n polynomials
with the threshold t.

Cooley-Tukey Nussbaumer
R An NTT-friendly ring A ring

Transformation
of mul. 1

2 lg t · n lg n 0
of add./sub. 1

lg t · n lg n Θ(n lg nmax (lg logt n, 1))

of small dim. polymul. n
t

1
t lg t · n lg n

Polynomial multiplication

of mul. 3
2 lg t · n lg n+ ntα−1 tα−1

lg t · n lg n

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

11

The Power-of-Two Case

▶ Cooley–Tukey.
▶ No twiddle factors in Z2l other than ±1.
▶ Need multiple NTTs over NTT-friendly moduli.
▶ Cost of polymul.: c1 · 3

2 lg t
· n lg n+ c2 · ntα−1 for large constants c1, c2.

▶ On Cortex-M3:
▶ 32-bit Montgomery: c1 = 23.
▶ 32-bit Barrett: c1 = 12.
▶ 16-bit Montgomery: c1 = 2 · 3 ∼ 3 · 3.

▶ c2 is closely related to c1.
▶ Nussbaumer:

▶ Still operate modulo a power of two.
▶ Cost of polymul.: tα−1

lg t
· n lg n.

▶ Toeplitz matrix-vector multiplication for dimension < t (see paper on why).

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

12

Results

Table: Performance cycles of polynomial multiplications with 32-bit arithmetic precision on Cortex-M3.

Work [ACC+21] [HAZ+24] This work
Coefficient ring

∏
i=0,1 Zqi

∏
i=0,1 Zqi Z2≤24

Approach Cooley–Tukey Cooley–Tukey Nussbaumer
Building block

NTT/Hom-M 16 774 (0.93) 15 626 15 820 (0.99)
NTT/Hom-V 16 774 (0.93) 15 626 8 259 (1.89)
Mul./BiHom 11 933 (0.68) 8 061 11 217 (0.72)
iNTT/Hom-I 23 721 (0.88) 20 772 10 960 (1.90)

Polynomial multiplication
Total cycles 69 202 (0.87) 60 085 46 256 (1.30)
Ratio of mul./BiHom over total cycles 17.24% 13.42% 24.25%

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

13

Overall Performance

Table: Performance cycles of Dilithium on Cortex-M3. K: key generation, S: signature generation, and V:
signature verification.

NIST
Work

Operation
security K S V
level Cycles Hash Cycles Hash Cycles Hash

II [HAZ+24] 1 764k 1 185k 5 617k 2 173k 1 597k 1 065k
This work 1 540k 1 123k 4 554k 2 173k 1 508k 1 065k

III [HAZ+24] 2 944k 2 034k 7 448k 3 399k 2 659k 1 872k
This work 2 669k 2 034k 6 529k 3 399k 2 522k 1 872k

V [HAZ+24] 4 923k 3 510k 20 180k 14 195k 4 525k 3 347k
This work 4 448k 3 510k 18 383k 14 195k 4 295k 3 347k

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

14

More

▶ Lattice-based cryptosystem Saber.
▶ Multiply in Z213 [x]

/⟨
x256 + 1

⟩
.

▶ 8-bit AVR.
▶ 8-bit native multiplication instructions.
▶ Generalized Barrett is the fastest for Dilithium NTT.
▶ For Saber: Took–Cook (16-bit) >> Nussbaumer (32-bit) >> others (NTT...).

▶ 213 is too large.
▶ Nussbaumer incurs precision issues.
▶ Took–Cook stays at 16-bit.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

15

Summary

Assuming high/long multiplications are slow.
▶ NTT over prime moduli.

▶ Generalized Barrett suitable for multi-limb arithmetic.
▶ Defeating any multiply-then-reduce approaches on Cortex-M3.

▶ Montgomery
▶ Solinas
▶ [Super fancy reduction]

▶ Optimizing modular multiplication as a whole instead of solely modular reduction.
▶ First time seen in the literature.

▶ Polynomial multiplications over power-of-two moduli.
▶ NTTs over odd moduli are slow: applying multiple NTTs is slow.
▶ Nussbaumer over Z2k is the fastest if there are no precision issues.

▶ Paper: https://tches.iacr.org/index.php/TCHES/article/view/11926.
▶ Artifact: https://github.com/vincentvbh/PolyMul_Without_PowerfulMul.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

https://tches.iacr.org/index.php/TCHES/article/view/11926
https://github.com/vincentvbh/PolyMul_Without_PowerfulMul

Thanks for listening

16

Reference I

[ACC+21] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang, Matthias J.
Kannwischer, and Bo-Yin Yang, Multi-moduli NTTs for Saber on Cortex-M3 and
Cortex-M4, IACR Transactions on Cryptographic Hardware and Embedded
Systems 2022 (2021), no. 1, 127–151,
https://tches.iacr.org/index.php/TCHES/article/view/9292.

[ARM10] ARM, Cortex-M3 Technical Reference Manual, 2010,
https://developer.arm.com/documentation/ddi0337/h.

[GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels, Compact
Dilithium Implementations on Cortex-M3 and Cortex-M4, IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021 (2020), no. 1, 1–24,
https://tches.iacr.org/index.php/TCHES/article/view/8725.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

https://tches.iacr.org/index.php/TCHES/article/view/9292
https://developer.arm.com/documentation/ddi0337/h
https://tches.iacr.org/index.php/TCHES/article/view/8725

17

Reference II

[HAZ+24] Junhao Huang, Alexandre Adomnicăi, Jipeng Zhang, Wangchen Dai, Yao Liu, Ray
C. C. Cheung, Çetin Kaya Koç, and Donglong Chen, Revisiting Keccak and
Dilithium Implementations on ARMv7-M, IACR Transactions on Cryptographic
Hardware and Embedded Systems 2024 (2024), no. 2, 1–24,
https://tches.iacr.org/index.php/TCHES/article/view/11419.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

https://tches.iacr.org/index.php/TCHES/article/view/11419

18

Cooley–Tukey

ω8 ∈ R with ω4
8 = −1.

R[x]
⟨x256+1⟩

R[x]
⟨x128−ω4⟩

R[x]
⟨x128+ω4⟩

R[x]
⟨x64−ω8⟩

R[x]
⟨x64+ω8⟩

R[x]

〈x64−ω3
8〉

R[x]

〈x64+ω3
8〉

Consider n = 2k, R[x]/〈xn + 1〉 .
▶ (#polynomial, dimension) : (1, n) →

(
2, n

2

)
→ · · · → (n, 1).

▶ Transformation cost: O (n lg n) multiplications/additions.
▶ Polynomial multiplication cost: O (n lg n) multiplications/additions.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

19

Nussbaumer

R[x]
⟨x256+1⟩

R[x]
⟨x16+1⟩ · · · · · · · · · R[x]

⟨x16+1⟩
R[x]

⟨x16+1⟩ · · · · · · · · · R[x]
⟨x16+1⟩

R[x]/〈x16+1〉 [y]
⟨y32−1⟩

R[x]/〈x16+1〉 [y]
⟨y32−1⟩

∼=
(

R[x]
⟨x16+1⟩

)32

with NTT in y modulo y32 − 1 and xis as twiddle factors.

Consider n = 22
k

, R[x]/〈xn + 1〉 .

▶ (#polynomial, dimension) : (1, n) →
(
2n

1
2 , n

1
2

)
→ · · · →

(
2k−1n, 2

)
.

▶ Transformation cost: 0 multiplications, O (n lg n lg2 lg2 n) additions.
▶ Polynomial multiplication cost: O (n lg n) multiplications, O (n lg n lg lg n) additions.

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo | Multiplying Polynomials without Powerful Multiplication Instructions

	Polynomial Multiplications over NTT-friendly Prime Moduli: Modular Multiplications
	Polynomial multiplications over NTT-Unfriendly Moduli: Nussbaumer
	Appendix

