Max Planck Institute for Security and Privacy, Kookmin University, Kookmin University

Multiplying Polynomials without Powerful Multiplication Instructions

Vincent Hwang, YoungBeom Kim, and Seog Chung Seo

September 15

Polynomial Multiplications

- NTT-friendly rings.
 - Prime moduli.
 - ► Composite moduli.
- ► NTT-unfriendly rings.
 - ightharpoonup Over \mathbb{Z}_{2^k} .
 - ► Multiple NTTs + CRT.
 - ► NTT over large NTT-friendly rings.
 - Addition-only NTT (Schönhage, Nussbaumer).

Optimize on platforms with **expensive** high/long multiplications.

- ► NTT-friendly rings with prime moduli:
 - ► Generalized Barrett modular multiplication.
- ▶ NTT-unfriendly rings
 - Nussbaumer over \mathbb{Z}_{2^k} .
 - Revise cost analysis.

Dilithium and Cortex-M3

Dilithium (ML-DSA now)

- ► NIST post-quantum cryptography standard (FIPS 204).
- ▶ Dilithium NTT: Modular arithmetic with the prime modulus $q = 2^{23} 2^{13} + 1$.

Cortex-M3

- ► Input-dependent-time long multiplication instructions.
- ► Emulate long/high multiplications with
 - low multiplication instructions, and
 - addition/logical instructions for merging and carrying.

Multiplication Instructions

R is a power of two, 2^{32} on Cortex-M3.

Barrett Multiplication

Modulus q < R, compute $c \equiv ab \mod q$ with a signed modular multiplication.

- ► Long-multiply and then reduce: Montgomery, and more.
- ▶ Barrett: Approximate with a *q*-multiple with equal high halve and then subtract.
 - ► High part of the long-products can be skipped.

Approximating with a q-multiple.

$$ab \mod q = ab - \left\lfloor \frac{ab}{q} \right\rfloor q.$$

For an
$$z \in \mathbb{Z}$$
, $\left|z - \left\lfloor \frac{ab}{q} \right\rceil \right| \le \delta \longrightarrow \left|(ab - zq) - ab \bmod q\right| \le \delta q$.

Let $b' = \left\lfloor \frac{b\mathbf{R}}{q} \right\rfloor$ be a precomputed constant.

- ▶ Barrett: $z = \left\lfloor \frac{ab'}{\mathtt{R}} \right\rfloor \longrightarrow \delta \leq 1$.
- ▶ This work: Relax δ for efficiency.

Generalized Barrett Multiplication (2-Limb)

Originally, compute $ab-\left\lfloor\frac{ab'}{\mathtt{R}}\right\rfloor q$ with $\left\lfloor\frac{ab'}{\mathtt{R}}\right\rfloor$ as:

Instead, compute $ab-\left\|\frac{ab'}{\mathtt{R}}\right\|q$ with $\left\|\frac{ab'}{\mathtt{R}}\right\|$ as:

A Bit More Math

- $\blacktriangleright b' = \left\lfloor \frac{bR}{q} \right\rfloor.$
- ▶ For a $\delta > 0$, δ -integer approximation $[]: \forall r \in \mathbb{R}, |r [r]| \leq \delta$.
- ▶ For a b, write $b_l + b_h \sqrt{\mathtt{R}} = \left\lfloor \frac{b\mathtt{R}}{q} \right\rfloor$. Define $[]]_b$ as

$$\forall r \in \mathbb{R}, \llbracket r \rrbracket_b := \left\lfloor \frac{a_l b_h}{\sqrt{\mathbb{R}}} \right\rfloor + \left\lfloor \frac{a_h b_l}{\sqrt{\mathbb{R}}} \right\rfloor + a_h b_h$$

where
$$a_l + a_h \sqrt{R} = \frac{rR}{\left\lfloor \frac{bR}{q} \right\rfloor}, b_l + b_h \sqrt{R} = \left\lfloor \frac{bR}{q} \right\rfloor$$
.

- \blacktriangleright Obviously, $|[\![r]\!]_b-r|<3$ (see previous slide).
- $ightharpoonup |\llbracket r
 rbracket_b \lfloor r
 ceil | < 3 ext{ (see paper)}.$
- $\left| \left(ab \left[\left[\frac{ab'}{\mathtt{R}} \right] \right]_b q \right) ab \bmod q \right| \le 3q.$

Results of Modular Multiplications

7

Plain multiplication					
Multiplication operation	Work	Cycle			
Long (variable-time)	[ARM10]	3-7			
Long (constant-time, non-generic)	[GKS20]	11			
Long (constant-time)	[GKS20]	12			
Modular multiplication (constant-time)					
Montgomery multiplication	[GKS20]	23			
Barrett multiplication (approximate)	This work	12 (1.92)			
Modular multiplication (variable-time)					
Montgomery multiplication	[GKS20]	9-16			
Barrett multiplication (floor)	This work	6-8 (1.13-2.67)			

Table: Overview of multiplication operations with 32-bit input values on Cortex-M3. The cycles are obtained by summing up the instruction timings from the manual [ARM10].

Results of NTTs/iNTTs and Matrix-Vector Multiplications

Table: Performance Cycles of Dilithium NTT/iNTT on Cortex-M3.

	Constant-time			able-time
	[GKS20]	This work	[GKS20]	This work
NTT	33 025	21 876 (1.51)	19347	15 985 (1.21)
iNTT	36 609	26 524 (1.38)	21 006	19 067 (1.10)

Table: Performance Cycles of the Matrix-Vector Multiplications for Dilithium on Cortex-M3.

Security	Const	tant-time	Variable-time		
level	[GKS20]	This work	[GKS20]	This work	
П	414k	242k (1.71)	240k	176k (1.36)	
III	639k	371k (1.72)	370k	267k (1.39)	
V	999k	566k (1.77)	578k	411k (1.41)	

Polynomial Multiplications over NTT-Unfriendly Moduli: Nussbaumer over \mathbb{Z}_{2^k}

Cooley-Tukey and Nussbaumer

 $\lg = \log_2$. Consider $R[x]/\langle x^n + 1 \rangle$, $n = 2^{2^k}$ for $k \in \mathbb{Z}_{\geq 0}$.

- Cooley—Tukey
 - ightharpoonup R: NTT-friendly ring containing n^{-1} .
 - Multiplication-based.
 - $ightharpoonup R^n$.
 - $ightharpoonup O(n \lg n)$ multiplications, $O(n \lg n)$ additions.
- Nussbaumer
 - ightharpoonup R: arbitrary ring containing n^{-1} .
 - Addition-based.
 - $ightharpoonup R^{O(n \lg n)}$.
 - ▶ 0 multiplications, $O(n \lg n \lg \lg n)$ additions.

A More Practical Cost Analysis

- 1. Transform until dimension $\leq t$, a platform-dependent constant.
- 2. Multiply with t^{α} multiplications for an $1 \leq \alpha \leq 2$.

Table: Arithmetic cost of Cooley–Tukey and Nussbaumer FFTs for multiplying two size-n polynomials with the threshold t.

	Cooley-Tukey	Nussbaumer			
R	An NTT-friendly ring	A ring			
Transformation					
# of mul.	$\frac{1}{2 \lg t} \cdot n \lg n$	0			
# of add./sub.	$\frac{1}{\lg t} \cdot n \lg n$	$\Theta(n \lg n \max(\lg \log_t n, 1))$			
# of small dim. polymul.	$\frac{n}{t}$	$\frac{1}{t \lg t} \cdot n \lg n$			
Polynomial multiplication					
# of mul.	$\frac{3}{2 \lg t} \cdot n \lg n + n t^{\alpha - 1}$	$\frac{t^{\alpha-1}}{\lg t} \cdot n \lg n$			

The Power-of-Two Case

- Cooley—Tukey.
 - ▶ No twiddle factors in \mathbb{Z}_{2^l} other than ± 1 .
 - ► Need multiple NTTs over NTT-friendly moduli.
 - ► Cost of polymul.: $c_1 \cdot \frac{3}{2 \lg t} \cdot n \lg n + c_2 \cdot n t^{\alpha-1}$ for large constants c_1, c_2 .
 - ► On Cortex-M3:
 - ▶ 32-bit Montgomery: $c_1 = 23$.
 - ▶ 32-bit Barrett: $c_1 = 12$.
 - ▶ 16-bit Montgomery: $c_1 = 2 \cdot 3 \sim 3 \cdot 3$.
 - $ightharpoonup c_2$ is closely related to c_1 .
- ► Nussbaumer:
 - Still operate modulo a power of two.
 - ► Cost of polymul.: $\frac{t^{\alpha-1}}{\lg t} \cdot n \lg n$.
 - lacktriangle Toeplitz matrix-vector multiplication for dimension < t (see paper on why).

Results

Table: Performance cycles of polynomial multiplications with 32-bit arithmetic precision on Cortex-M3.

[ACC ⁺ 21]	[HAZ ⁺ 24]	This work				
$\prod_{i=0,1} \mathbb{Z}_{q_i}$	$\prod_{i=0,1} \mathbb{Z}_{q_i}$	$\mathbb{Z}_{2^{\leq 24}}$				
Cooley-Tukey	Cooley-Tukey	Nussbaumer				
Building block						
16 774 (0.93)	15 626	15 820 (0.99)				
16 774 (0.93)	15 626	8 259 (1.89)				
11 933 (0.68)	8 0 6 1	11 217 (0.72)				
23 721 (0.88)	20 772	10 960 (1.90)				
Polynomial multiplication						
69 202 (0.87)	60 085	46 256 (1.30)				
17.24%	13.42%	24.25%				
	$\prod_{i=0,1} \mathbb{Z}_{q_i}$ Cooley-Tukey uilding block 16 774 (0.93) 16 774 (0.93) 11 933 (0.68) 23 721 (0.88) mial multiplication 69 202 (0.87)	$\begin{array}{c cccc} & \prod_{i=0,1} \mathbb{Z}_{q_i} & \prod_{i=0,1} \mathbb{Z}_{q_i} \\ \hline \text{Cooley-Tukey} & \text{Cooley-Tukey} \\ \hline \text{Uniformal plock} & & & \\ \hline & 16774~(0.93) & & 15626 \\ \hline & 16774~(0.93) & & 15626 \\ \hline & 11933~(0.68) & & 8061 \\ \hline & 23721~(0.88) & & 20772 \\ \hline & & \\ \hline & \text{mial multiplication} & & \\ \hline & 69202~(0.87) & & 60085 \\ \hline \end{array}$				

Overall Performance

Table: Performance cycles of Dilithium on Cortex-M3. **K**: key generation, **S**: signature generation, and **V**: signature verification.

NIST		Operation					
security	Work	K		S		V	
level		Cycles	Hash	Cycles	Hash	Cycles	Hash
	[HAZ ⁺ 24]	1 764k	1 185k	5617k	2 173k	1 597k	1 065k
	This work	1 540k	1 123k	4 554k	2 173k	1 508k	1 065k
III	[HAZ ⁺ 24]	2944k	2 034k	7 448k	3 399k	2 659k	1872k
	This work	2669k	2 034k	6 529k	3 399k	2 522k	1 872k
V	[HAZ ⁺ 24]	4 923k	3 5 1 0 k	20 180k	14 195k	4 525k	3347k
	This work	4 448k	3510k	18 383k	14 195k	4 295k	3347k

More

- ► Lattice-based cryptosystem Saber.
 - ightharpoonup Multiply in $\mathbb{Z}_{2^{13}}[x]/\langle x^{256}+1\rangle$.
- ▶ 8-bit AVR.
 - 8-bit native multiplication instructions.
 - ► Generalized Barrett is the fastest for Dilithium NTT.
 - ► For Saber: Took—Cook (16-bit) >> Nussbaumer (32-bit) >> others (NTT...).
 - $ightharpoonup 2^{13}$ is too large.
 - Nussbaumer incurs precision issues.
 - ► Took—Cook stays at 16-bit.

Summary

Assuming high/long multiplications are slow.

- ► NTT over prime moduli.
 - Generalized Barrett suitable for multi-limb arithmetic.
 - ▶ Defeating any multiply-then-reduce approaches on Cortex-M3.
 - Montgomery
 - Solinas
 - ► [Super fancy reduction]
 - Optimizing modular multiplication as a whole instead of solely modular reduction.
 - First time seen in the literature.
- Polynomial multiplications over power-of-two moduli.
 - ▶ NTTs over odd moduli are slow: applying multiple NTTs is slow.
 - ▶ Nussbaumer over \mathbb{Z}_{2^k} is the fastest if there are no precision issues.
- ► Paper: https://tches.iacr.org/index.php/TCHES/article/view/11926.
- ► Artifact: https://github.com/vincentvbh/PolyMul_Without_PowerfulMul.

Reference I

- [ACC+21] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang, Matthias J. Kannwischer, and Bo-Yin Yang, *Multi-moduli NTTs for Saber on Cortex-M3 and Cortex-M4*, IACR Transactions on Cryptographic Hardware and Embedded Systems **2022** (2021), no. 1, 127–151, https://tches.iacr.org/index.php/TCHES/article/view/9292.
- [ARM10] ARM, Cortex-M3 Technical Reference Manual, 2010, https://developer.arm.com/documentation/ddi0337/h.
- [GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels, *Compact Dilithium Implementations on Cortex-M3 and Cortex-M4*, IACR Transactions on Cryptographic Hardware and Embedded Systems **2021** (2020), no. 1, 1–24, https://tches.iacr.org/index.php/TCHES/article/view/8725.

Reference II

[HAZ+24] Junhao Huang, Alexandre Adomnicăi, Jipeng Zhang, Wangchen Dai, Yao Liu, Ray C. C. Cheung, Çetin Kaya Koç, and Donglong Chen, Revisiting Keccak and Dilithium Implementations on ARMv7-M, IACR Transactions on Cryptographic Hardware and Embedded Systems 2024 (2024), no. 2, 1–24, https://tches.iacr.org/index.php/TCHES/article/view/11419.

Cooley-Tukey

 $\omega_8 \in R \text{ with } \omega_8^4 = -1.$

Consider $n = 2^k$, $R[x]/\langle x^n + 1 \rangle$.

- $\blacktriangleright \ (\# \text{polynomial}, \text{dimension}) : (1, n) \to \left(2, \frac{n}{2}\right) \to \cdots \to (n, 1).$
- ▶ Transformation cost: $O(n \lg n)$ multiplications/additions.
- ▶ Polynomial multiplication cost: $O(n \lg n)$ multiplications/additions.

Nussbaumer

$$\frac{R[x]}{\langle x^{256}+1\rangle} \qquad \qquad \frac{R[x]}{\langle x^{16}+1\rangle} \qquad \frac{R[x]}{\langle x^{16}+1\rangle} \qquad \qquad \cdots \qquad \frac{R[x]}{\langle x^{16}+1\rangle} \\ \frac{R[x]/\langle x^{16}+1\rangle}{\langle y^{32}-1\rangle} \qquad \qquad \cdots \qquad \frac{R[x]}{\langle x^{16}+1\rangle}$$

$$\frac{\frac{R[x]\left/\left\langle x^{16}+1\right\rangle [y]}{\left\langle y^{32}-1\right\rangle }\cong \left(\frac{R[x]}{\left\langle x^{16}+1\right\rangle }\right)^{32}\text{ with NTT in }y\text{ modulo }y^{32}-1\text{ and }x^{i}\text{s as twiddle factors.}$$

Consider $n = 2^{2^k}$, $R[x]/\langle x^n + 1 \rangle$.

- $\blacktriangleright \ (\# \text{polynomial}, \text{dimension}) : (1,n) \to \left(2n^{\frac{1}{2}}, n^{\frac{1}{2}}\right) \to \cdots \to \left(2^{k-1}n, 2\right).$
- ▶ Transformation cost: 0 multiplications, $O(n \lg n \lg_2 \lg_2 n)$ additions.
- ▶ Polynomial multiplication cost: $O(n \lg n)$ multiplications, $O(n \lg n \lg \lg n)$ additions.