Max Planck Institute for Security and Privacy

Implementing Polynomial Multiplications for Lattice-Based
Cryptography on Microcontrollers

Vincent Hwang

January 6th

Today’s Plan

1. Lattice-based cryptography.

» Well-balanced size and computational efficiency.
» Popular (well-studied).
» Computational bottleneck:

» Polynomial multiplications.
» Cryptographic hash functions.
2. Microcontrollers.
» Resource-constraint devices.
» Low-level implementation is more preferred.
» Optimizing compilers are not very “optimizing.”
» Susceptible to implementation attacks.
3. Polynomial multiplications.
» Modular arithmetic.
» Memory optimization of fast homomorphisms.
» Choices of fast homomorphisms.

Lattice-Based Cryptography

» Cryptography relying on lattice hard problems.
» Lattice hard problems:

» LWE, R-LWE, M-LWE,

» SIS, R-SIS, M-SIS, NTRU,

» and more...

Unstructured Learning-With-Errors

1. Generate public A (uniform), secret s, e (small support).
2. Compute public As + e.
3. Challenge: find (s, e) from (A, As + e).
> A, s, e: large matrices
» FrodoKEM (NIST round 3 alternate candidate).
» Computational bottleneck: As (dimension n x n).
> n =640 ~ 1344.
> O(n®) or O (n'&27).
» Too slow in practice.

Structured Learning-With-Errors

1. Generate public A (uniform), secret s, e (small support).
2. Compute public As + e.
3. Challenge: find (s, e) from (A, As + e).

» Ring-learning-with-errors (R-LWE).
> A, s, e: elements in a large polynomial ring.
» NewHope (NIST round 2 candidate).
» Module-learning-with-errors (M-LWE).
» A: small matrix over a large polynomial ring.
» s, e: small vectors over a large polynomial ring.
» More flexible on the parameter choices.
> ML-KEM, ML-DSA (NIST standards).
» We need fast polynomial multiplications!
> LWE: O (n3) or O (nlog? 7).
> R-LWE, M-LWE (with small module dimension): O (n*) or O (nlogn).

Polynomial Multiplication

Compute a(x)b(z) in Rlx]/{g(x)), R = Z,, = Z/mZ for a positive integer m.
1. Modular arithmetic.
» How efficient the ring arithmetic in R can be?
2. Fast homomorphisms.

» Which asymptotically faster (faster than O (rn*)) approaches we should choose?
» Very complicated. Takes many tries.

3. Memory operations.
» Usually invisible from the math description.

Multiplication Instructions

R = 216 232 Signed arithmetic throughout this talk.

a i b
Long 1%[] = I ab
Low lil o= ab mod R
High 1%[] E— | %]

» How to map the modular arithmetic to multiplication instructions?
» How do the multiplication instructions perform on a particular processor?

Montgomery Multiplication

Fixed modulus ¢, precision R (power-of-two), precomputed —¢~! mod R.
Given a, b, compute
ab + (—abq_1 mod R) q
R
Division and modulo reduction by R are cheap, free if nicely aligned with the architecture.
» Result derived from the high parts of the long products.
» Result is scaled by R~! mod g.

> Additional Montgomery multiplication with R mod ¢ — = ab (mod q).
» Replace b by bR mod ¢ (precomputation required).

=abR™' (mod q).

a (bR mod ¢) + (—a (bR mod ¢) ¢~! mod R) ¢
R

a, (bR mod ¢) — a (bR mod ¢): long mul.
a (bR mod q) — —a (bR mod ¢) ¢~ mod R: low mul. (assuming modR is free).
—a (bR mod ¢) ¢~* mod R — (—a (bR mod ¢) ¢~* mod R) ¢: long mul.
Add.
5. Divide by R.
Summary: 2 long mul. + 1 low mul.

Hon -~

Aligning the Arithmetic with Low-Level Instructions

» Armv7-M (32-bit ISA): native 32-bit low (w/ acc.), long mul. (w/ acc.) instructions.

» Processors:
» Cortex-M3.

> Low takes 1 cycle, acc. one takes 2 cycles.
> Long mul takes 3 ~ 7 cycles.

» Cortex-M4.

» DSP extension: high multiplication instructions.
» Each multiplication instruction takes 1 cycle.

How many cycles does 32-bit Montgomery multiplication take?
> 9 ~ 16 cycles on Cortex-M3.
» 3 cycles on Cortex-M4.

Alternatives?

» Can we do better than 32-bit Montgomery mul. on Cortex-M3?
> Yes, 32-bit Barrett mul is faster.
» Can we do better than 32-bit Montgomery mul. on Cortex-M47?

» No other known approach outperforming it.
» Other approaches perform the same, but with more memory for the precomputed values.

Barrett Multiplication

Given a, b, we have

abmod q = ab — {ab—‘ q
q
by definition.
Barrett mul. approximates {‘ﬂ up to a small integral perturbation. Various formulations (bR/q
precomputed).
> { LbR/(ﬂ

w
- 2]
- [

advanced rounding technique [].

Cost of Barrett Multiplication

abR/q

Typically, ab — | %% | g € [-3,) s0
o |21, o~ (| L91] o).

R

1. a,b+— ab mod R: low mul.
2. a,|bR/q] — {%} high mul.

3. L%—‘ ,q L%—‘ ¢ mod R: low mul.
4. Subtract.
Summary: 2 low mul. + 1 high mul.
» Cortex-M3: 6 ~ 10 cycles.
» Cortex-M4: 3 cycles.

Comparisons

» Cortex-M3:

» Montgomery: 9 ~ 16 cycles.
» (Preferred) Barrett: 6 ~ 10 cycles.

» Cortex-M4:
» (Preferred) Montgomery: 3 cycles, precomputed bR mod ¢ (we don’t need b anymore).
» Barrett: 3 cycles, precomputed {%ﬂ (we still need b).

» Know your instruction set architecture.
» Know your platform.
Constant-time?

» Advanced rounding technique on Cortex-M3.
» Solution: see this paper:
https://tches.iacr.org/index.php/TCHES/article/view/11926/11785.

v

https://tches.iacr.org/index.php/TCHES/article/view/11926/11785
https://tches.iacr.org/index.php/TCHES/article/view/11926/11785

Fast Homomorphisms

degg = n,degh; < n.

Fast homomorphism f.

Rlx]/(g) IL; Rlzl/{hi)

a(z)b(x) = 7 (f (a(z)) f (b(x)) € Rlz]/(g)
Large polynomial ring — several small polynomial rings.
Toom—k: O (nloer(2k=1)),
Number-theoretic transforms: O (nlog, n).
Number-theoretic transforms (with poly. ring extensions): O (nlog, n log, log, n).
A lot of ways.

vvyyVvyvVvyy

Frequently Seen Patterns

Component-wise arithmetic of sub-polynomials.

| NN W]
Chop M IT] Transform W1 T]
[T] — —_—
| HEE EEE BEN | o
| NN W]

» Chop phase is free (for illustration only).
» Transform phase costs.

» Arithmetic cost can be inferred from the math.
» Memory cost is usually invisible from the math.

Number-Theoretic Transform

R[x]
/ ey \
Rlz] Rle]
(28 —wa) (x8+wa)
R[] R[z] R[x] R[z]
(zt—ws) (x4 4ws) <z47w§> <x4+w§>

Poly. mul. in R[z]/(z'® 4+ 1) — four poly. mul. of the form R[z]/(a* —).

Memory and Registers

Memory M» Registers Arithmetic Units

» Registers:
» Fast memory inside the processor.
> 4 register is ISA-fixed.
» Bit-size of register is ISA-fixed.
» Memory:
» Access though memory bus: incurring overhead.
> Size of memory depends on what the platform designers want.

How to minimize transfers between memory and registers?

Processor

» Issue as much arithmetic as possible while dependent data are in register.

» Restructure the computation flow if needed.

Memory Operation Cost (First Try)

R[x]

@)

__Rlz] R[z]
(8 —way) (x84wyq)
- N - N
Rz Rz R[z] R[z]
(zt—ws) (xt+ws) <m4—w;’> <.’1:’1+w;r1’>

Two load-store pairs for each entry. First and Second.

Memory Operation Cost (Optimized): Layer-Merging

R[x]
/ S \
R[z] R[z]
(8 —way) (z8+wa)
/ N e N
R[] R[z] Rlx] R[]
(zt—ws) (xt+ws) <m4—w;’> <.’1:’1+w;r1’>

One load-store pair for each entry.

Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

2pefil:
BEAE

L Registers J
Load Store

Processor

Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

zk:]:]:
zk:l:]:

L— Registers —
Load Store

Processor

Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

LEL
LEL

L—— Registers
Load Store

Processor

Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

dui

|
L Registers

Load Store

Processor

Choosing a Fast Homomorphism

degg = n,degh; < n.

Fast homomorphism f.

Rlz]/(g) [Rlz]/(Ri)

a(z)b(z) = [~ (f (a(2)) f (b(x)) € Rlz]/(g)

» Necessary conditions of the homomorphisms.
» Algebraic properties of the polynomial rings.
» Performance characteristics of the platforms:

» Multiplication instructions.
» Vectorization (for high-performance processors).

Power-of-Two Cyclotomic Polynomial Rings |

ForVi <n € Z,n = 2", we require Juw? = —1€ Rand 32! € R for the Cooley—Tukey FFT

- H W - H l-n 1 _ bltrevzl (2z+1)>

EIESY
R[z]
/ ey \
R[x] R[x]
<1 *1—w2171> <.’L *1+w2171>
-~ N -~ N
R[z] Rlz] Rlz] R[e]

<xn727w2l72> <rufz+wzl*2> <I'71727w2171+2172> <In72+w217]+2172>

Power-of-Two Cyclotomic Polynomial Rings |l

R =17, in lattices. 3w? = —1 € R? 32~ € R?

Scheme I q l
ML-KEM 3329 =13-256 + 1 <7
ML-DSA 8380417 =2% — 213 11 | <12
Saber (round 3 candidate) || 8192 = 213 0

» ML-KEM: 23329 [l‘]/<fl7256 + 1> = H,L Z3329 [[L]/<[E2 — Oéi> .
» ML-DSA: Zsssoar7[x]/ (2?0 + 1) =[], Zsssoarr|z]/(x — o).
» Saber: Zglgg[l‘}/<l‘256 + 1> ?

Approach One: Choose a New Coefficient Ring

In lattices, one of a, b has small coefficients.
» Coeff. of a < q.
» Coeff. of b < a small constant .
> Coeff.ofabinZ < q-n- p.
» Compute over Z, foranodd ¢’ > ¢ - n - .
» Reduce to Z, at the end of poly. mul.
» CRT:Z,, % Zg, With ¢1g2 > q-n - p.
» Signed arithmetic relaxed to > ¢ - n - p/2.

Approach Two: Polynomial Ring Extension

For Vi < n € Z, we require Juw?' = —1,27" € R for
Rlz] Rlz] o~ Rlz]
<:L.n + 1> - H <I‘77‘71 i U)Ql—1> - = H <xnfl . wbitrevgl (2i+1)> .
Craft an w.

> Introduce y ~ 2%, R = Z,[y]/(y'® + 1), w =y.
» —: Extension with zero-padding.

»Wehave il LRI Rla] Rla]
<.T,‘25(é + 1> = <'7;16 _ y> - <.7)32 _ 1> = H <fE _ wbitreV32(i)> ’

Craft the inverses of powers of two.
» 2-1R: localization of R at {1,2,4,--}.
» Practically, compute 2'ab € 2!'R, then shift right by [bits.

Performance

> NTT, Zy[2]/ (225 + 1).
» Modular arithmetic in Z,/.
» Multiplication-heavy hom. + fast polymul. with small dim.
> NTT, (Zg, X Zg,) [x] /(2?6 +1).
» Modular arithmetic in Zg, x Zg,.
» Multiplication-heavy hom. + fast polymul. with small dim.
» Polynomial ring extension, 27 R[z] /(2% — 1):
» Arithmetic in Zs192 — plain arithmetic in registers.
» Addition-heavy hom. + large # fast polymul. with small dim.

Processor [[NTT, Z, [NTT, Z,, x Z,, | Polynomial ring extension

Cortex-M3 98213 69 187 45797
Cortex-M4 23107 37161 Close to Cortex-M3

Fastest approaches on high-performance processors.
> Processors implementing Armv8-A Neon: NTT, Z,.
» Processors implementing x86 AVX2: NTT, Zy, x Zg,.

Summary |

Optimize polynomial multiplication on microcontrollers.
1. Pick a modular arithmetic.

2. Pick a fast homomorphism.
»> A lot more to say. See this survey: https://cic.iacr.org/p/1/2/1.

3. Optimize the memory operations.
In reality, we jump between each steps.

» A particular modular arithmetic might be the fastest one for a homomorphism on a certain
platform, BUT NOT ON OTHER PLATFORMS.

» A particular homomorphism might be best applied to the polynomial ring on a certain
platform, BUT NOT ON OTHER PLATFORMS.

https://cic.iacr.org/p/1/2/1
https://cic.iacr.org/p/1/2/1

Summary |

Know your platforms.

» Instruction set architecture (ISA):
Armv7E-M: https://developer.arm.com/documentation/ddi0403/ed.

>
>
>
>
>

Armv8-M:
Armv7-A:
Armv8-A:
Armv9-A:

» Processors.
» One for each processor.

» Cortex-M: search “Technical Reference Manual.”

> Cortex-A: search “Software Optimization Guide.”

» If unlucky, no document for the target processor.

» Benchmark the instructions following the ISA.

» |f unlucky, undocumented instructions.

» AMX coprocessor in Apple M1, M2, M3: See here: https://github.com/corsix/amx.

» Guess how instructions are encoded.

» Benchmark the undocumented instructions.

https://developer.
https://developer.
https://developer.
https://developer.

arm.com/documentation/ddi0553/latest.
arm.com/documentation/ddi0406/cb.
arm.com/documentation/ddi0487/gb/?lang=en.
arm.com/documentation/ddi0487/latest/.

https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0406/cb
https://developer.arm.com/documentation/ddi0406/cb
https://developer.arm.com/documentation/ddi0487/gb/?lang=en
https://developer.arm.com/documentation/ddi0487/gb/?lang=en
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://github.com/corsix/amx
https://github.com/corsix/amx

Summary llI

Know the fundamentals.

» Fast homomorphisms are conditioned on several things.

» Fundamentals in algebra help crafting the desired algebraic structures.
Various algebraic techniques that were found useful in the literature for lattices.

» FFTs:

» Radix-2 Cooley—Tukey.

» Non-radix-2/mixed-radix Cooley—Tukey.

» Good-Thomas (tensor product of algebras).

» (Truncated)Rader’s.

» Schoénhage, Nussbaumer (polynomial ring extension).

» Toeplitz matrix-vector product (algebraic dual of hom., vector instructions).

Summary IV

Homomorphisms in ML-KEM and ML-DSA are fixed.

ML-KEM (16-bit Z,)

Processor | ISA | Modular arith. | Layer-merging
Cortex-M3 | Armv7-M Plantard 3
Cortex-M4 | Armv7E-M Plantard 4
Apple M1 Armv8-A Barrett 4
Haswell x86 + AVX2 || Montgomery | 3
ML-DSA (32-bit Z,)
Processor | ISA | Modular arith. | Layer-merging
Cortex-M3 | Armv7-M Barrett 3
Cortex-M4 | Armv7E-M Montgomery | 4
Apple M1 Armv8-A Barrett 4
Haswell x86 + AVX2 || Montgomery | 3

Summary V

Saber (Zs192)

Processor | ISA | Modular arith. | Hom. | Layer-merging
Cortex-M3 | Armv7-M Plain Poly. ring ext. 2
Cortex-M4 | Armv7E-M Montgomery NTT, Zy 4
Apple M1 | Armv8-A Barrett NTT, Zy 4
Haswell x86 + AVX2 || Montgomery | NTT, Z,, x Zg, | 3

Thank you for your attention

Slides: https://vincentvbh.github.io/slides/UK_MMU-UTAR_PQC_2026_01_06.pdf

https://vincentvbh.github.io/slides/UK_MMU-UTAR_PQC_2026_01_06.pdf

