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Today’s Plan

1. Lattice-based cryptography.
▶ Well-balanced size and computational efficiency.
▶ Popular (well-studied).
▶ Computational bottleneck:

▶ Polynomial multiplications.
▶ Cryptographic hash functions.

2. Microcontrollers.
▶ Resource-constraint devices.
▶ Low-level implementation is more preferred.
▶ Optimizing compilers are not very “optimizing.”
▶ Susceptible to implementation attacks.

3. Polynomial multiplications.
▶ Modular arithmetic.
▶ Memory optimization of fast homomorphisms.
▶ Choices of fast homomorphisms.
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Lattice-Based Cryptography

▶ Cryptography relying on lattice hard problems.
▶ Lattice hard problems:

▶ LWE, R-LWE, M-LWE,
▶ SIS, R-SIS, M-SIS, NTRU,
▶ and more...
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Unstructured Learning-With-Errors

1. Generate public A (uniform), secret s, e (small support).
2. Compute public As+ e.
3. Challenge: find (s, e) from (A,As+ e).

▶ A, s, e: large matrices
▶ FrodoKEM (NIST round 3 alternate candidate).
▶ Computational bottleneck: As (dimension n× n).

▶ n = 640 ∼ 1344.
▶ O(n3) or O

(
nlog2 7

)
.

▶ Too slow in practice.
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Structured Learning-With-Errors

1. Generate public A (uniform), secret s, e (small support).
2. Compute public As+ e.
3. Challenge: find (s, e) from (A,As+ e).

▶ Ring-learning-with-errors (R-LWE).
▶ A, s, e: elements in a large polynomial ring.
▶ NewHope (NIST round 2 candidate).

▶ Module-learning-with-errors (M-LWE).
▶ A: small matrix over a large polynomial ring.
▶ s, e: small vectors over a large polynomial ring.
▶ More flexible on the parameter choices.
▶ ML-KEM, ML-DSA (NIST standards).

▶ We need fast polynomial multiplications!
▶ LWE: O

(
n3

)
or O

(
nlog2 7

)
.

▶ R-LWE, M-LWE (with small module dimension): O
(
n2

)
or O (n log n).
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Polynomial Multiplication

Compute a(x)b(x) in R[x]/〈g(x)〉 , R = Zm := Z/mZ for a positive integer m.
1. Modular arithmetic.

▶ How efficient the ring arithmetic in R can be?

2. Fast homomorphisms.
▶ Which asymptotically faster (faster than O

(
n2

)
) approaches we should choose?

▶ Very complicated. Takes many tries.

3. Memory operations.
▶ Usually invisible from the math description.
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Multiplication Instructions

R = 216, 232. Signed arithmetic throughout this talk.

a b

Long 7→ ab

Low 7→ ab mod R

High 7→
⌊
ab
R

⌋

▶ How to map the modular arithmetic to multiplication instructions?
▶ How do the multiplication instructions perform on a particular processor?
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Montgomery Multiplication

Fixed modulus q, precision R (power-of-two), precomputed −q−1 mod R.
Given a, b, compute

ab+
(
−abq−1 mod R

)
q

R
≡ abR−1 (mod q).

Division and modulo reduction by R are cheap, free if nicely aligned with the architecture.
▶ Result derived from the high parts of the long products.
▶ Result is scaled by R−1 mod q.

▶ Additional Montgomery multiplication with R2 mod q −→ ≡ ab (mod q).
▶ Replace b by bR mod q (precomputation required).
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Cost of Montgomery Multiplication (with Precomputation)

a (bR mod q) +
(
−a (bR mod q) q−1 mod R

)
q

R
≡ ab (mod q)

1. a, (bR mod q) 7→ a (bR mod q): long mul.
2. a (bR mod q) 7→ −a (bR mod q) q−1 mod R: low mul. (assuming modR is free).
3. −a (bR mod q) q−1 mod R 7→

(
−a (bR mod q) q−1 mod R

)
q: long mul.

4. Add.
5. Divide by R.

Summary: 2 long mul. + 1 low mul.
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Aligning the Arithmetic with Low-Level Instructions

▶ Armv7-M (32-bit ISA): native 32-bit low (w/ acc.), long mul. (w/ acc.) instructions.
▶ Processors:

▶ Cortex-M3.
▶ Low takes 1 cycle, acc. one takes 2 cycles.
▶ Long mul takes 3 ∼ 7 cycles.

▶ Cortex-M4.
▶ DSP extension: high multiplication instructions.
▶ Each multiplication instruction takes 1 cycle.

How many cycles does 32-bit Montgomery multiplication take?
▶ 9 ∼ 16 cycles on Cortex-M3.
▶ 3 cycles on Cortex-M4.
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Alternatives?

▶ Can we do better than 32-bit Montgomery mul. on Cortex-M3?
▶ Yes, 32-bit Barrett mul is faster.

▶ Can we do better than 32-bit Montgomery mul. on Cortex-M4?
▶ No other known approach outperforming it.
▶ Other approaches perform the same, but with more memory for the precomputed values.
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Barrett Multiplication

Given a, b, we have

ab mod q = ab−
⌊
ab

q

⌉
q

by definition.
Barrett mul. approximates

⌊
ab
q

⌉
up to a small integral perturbation. Various formulations (bR/q

precomputed).

▶
⌊
a⌊ bR/q ⌉

R

⌉
.

▶
⌊
a⌊ bR/q ⌉

R

⌋
.

▶
r

a⌊ bR/q ⌉
R

z
, advanced rounding technique JK.

Vincent Hwang | Implementing Polynomial Multiplications for Lattice-Based Cryptography on Microcontrollers



13

Cost of Barrett Multiplication

Typically, ab−
⌊
a bR/q

R

⌉
q ∈

[
− R

2 ,
R
2

)
so

ab−
⌊
a bbR/q e

R

⌉
q = (ab mod R)−

(⌊
a bbR/q e

R

⌉
q mod R

)
.

1. a, b 7→ ab mod R: low mul.

2. a, bbR/q e 7→
⌊
a⌊ bR/q ⌉

R

⌉
: high mul.

3.
⌊
a⌊ bR/q ⌉

R

⌉
, q 7→

⌊
a⌊ bR/q ⌉

R

⌉
q mod R: low mul.

4. Subtract.
Summary: 2 low mul. + 1 high mul.
▶ Cortex-M3: 6 ∼ 10 cycles.
▶ Cortex-M4: 3 cycles.
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Comparisons

▶ Cortex-M3:
▶ Montgomery: 9 ∼ 16 cycles.
▶ (Preferred) Barrett: 6 ∼ 10 cycles.

▶ Cortex-M4:
▶ (Preferred) Montgomery: 3 cycles, precomputed bR mod q (we don’t need b anymore).
▶ Barrett: 3 cycles, precomputed

⌊
bR
q

⌉
(we still need b).

▶ Know your instruction set architecture.
▶ Know your platform.
▶ Constant-time?

▶ Advanced rounding technique on Cortex-M3.
▶ Solution: see this paper:

https://tches.iacr.org/index.php/TCHES/article/view/11926/11785.
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Fast Homomorphisms

deg g = n, deghi < n.

R[x]/〈g〉
∏

i R[x]/〈hi〉
Fast homomorphism f .

a(x)b(x) = f−1 (f (a(x)) f (b(x)) ∈ R[x]/〈g〉

▶ Large polynomial ring → several small polynomial rings.
▶ Toom–k: O

(
nlogk(2k−1)

)
.

▶ Number-theoretic transforms: O (n log2 n).
▶ Number-theoretic transforms (with poly. ring extensions): O (n log2 n log2 log2 n).
▶ A lot of ways.
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Frequently Seen Patterns

Component-wise arithmetic of sub-polynomials.

Chop Transform

▶ Chop phase is free (for illustration only).
▶ Transform phase costs.

▶ Arithmetic cost can be inferred from the math.
▶ Memory cost is usually invisible from the math.
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Number-Theoretic Transform

R[x]
⟨x16+1⟩

R[x]
⟨x8−ω4⟩

R[x]
⟨x8+ω4⟩

R[x]
⟨x4−ω8⟩

R[x]
⟨x4+ω8⟩

R[x]

〈x4−ω5
8〉

R[x]

〈x4+ω5
8〉

Poly. mul. in R[x]
/⟨

x16 + 1
⟩
→ four poly. mul. of the form R[x]

/⟨
x4 − α

⟩
.
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Memory and Registers

Memory Registers Arithmetic Units
Transfer

Processor

▶ Registers:
▶ Fast memory inside the processor.
▶ # register is ISA-fixed.
▶ Bit-size of register is ISA-fixed.

▶ Memory:
▶ Access though memory bus: incurring overhead.
▶ Size of memory depends on what the platform designers want.

How to minimize transfers between memory and registers?
▶ Issue as much arithmetic as possible while dependent data are in register.
▶ Restructure the computation flow if needed.
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Memory Operation Cost (First Try)

R[x]
⟨x16+1⟩

R[x]
⟨x8−ω4⟩

R[x]
⟨x8+ω4⟩

R[x]
⟨x4−ω8⟩

R[x]
⟨x4+ω8⟩

R[x]

〈x4−ω5
8〉

R[x]

〈x4+ω5
4〉

Two load-store pairs for each entry. First and Second.
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Memory Operation Cost (Optimized): Layer-Merging

R[x]
⟨x16+1⟩

R[x]
⟨x8−ω4⟩

R[x]
⟨x8+ω4⟩

R[x]
⟨x4−ω8⟩

R[x]
⟨x4+ω8⟩

R[x]

〈x4−ω5
8〉

R[x]

〈x4+ω5
4〉

One load-store pair for each entry.
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Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

Registers

Processor

Load Store
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Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

Registers

Processor

Load Store

Vincent Hwang | Implementing Polynomial Multiplications for Lattice-Based Cryptography on Microcontrollers



23

Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

Registers

Processor

Load Store
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Memory Operation Cost (Optimized, Concretely)

Memory (before) Memory (after)

Registers

Processor

Load Store
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Choosing a Fast Homomorphism

deg g = n, deghi < n.

R[x]/〈g〉
∏

i R[x]/〈hi〉
Fast homomorphism f .

a(x)b(x) = f−1 (f (a(x)) f (b(x)) ∈ R[x]/〈g〉

▶ Necessary conditions of the homomorphisms.
▶ Algebraic properties of the polynomial rings.
▶ Performance characteristics of the platforms:

▶ Multiplication instructions.
▶ Vectorization (for high-performance processors).
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Power-of-Two Cyclotomic Polynomial Rings I

For ∀l ≤ n ∈ Z, n = 2m, we require ∃w2l = −1 ∈ R and ∃2−l ∈ R for the Cooley–Tukey FFT

R[x]

〈xn + 1〉
∼=

∏ R[x]⟨
xn−1 ± w2l−1

⟩ ∼= · · · ∼=
∏
i

R[x]⟨
xn−l − wbitrev

2l
(2i+1)

⟩ .
R[x]

⟨xn+1⟩

R[x]

〈xn−1−ω2l−1〉
R[x]

〈xn−1+ω2l−1〉

R[x]

〈xn−2−ω2l−2〉
R[x]

〈xn−2+ω2l−2〉
R[x]

〈xn−2−ω2l−1+2l−2〉
R[x]

〈xn−2+ω2l−1+2l−2〉
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Power-of-Two Cyclotomic Polynomial Rings II

R = Zq in lattices. ∃ω2l = −1 ∈ R? ∃2−l ∈ R?

Scheme q l

ML-KEM 3329 = 13 · 256 + 1 ≤ 7
ML-DSA 8380417 = 223 − 213 + 1 ≤ 12
Saber (round 3 candidate) 8192 = 213 0

▶ ML-KEM: Z3329[x]
/⟨

x256 + 1
⟩ ∼=

∏
i Z3329[x]

/⟨
x2 − αi

⟩
.

▶ ML-DSA: Z8380417[x]
/⟨

x256 + 1
⟩ ∼=

∏
i Z8380417[x]/〈x− αi〉 .

▶ Saber: Z8192[x]
/⟨

x256 + 1
⟩

?
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Approach One: Choose a New Coefficient Ring

In lattices, one of a, b has small coefficients.
▶ Coeff. of a < q.
▶ Coeff. of b < a small constant µ.
▶ Coeff. of ab in Z < q · n · µ.
▶ Compute over Zq′ for an odd q′ ≥ q · n · µ.
▶ Reduce to Zq at the end of poly. mul.

▶ CRT: Zq1 × Zq2 with q1q2 ≥ q · n · µ.
▶ Signed arithmetic relaxed to ≥ q · n · µ/2.
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Approach Two: Polynomial Ring Extension

For ∀l ≤ n ∈ Z, we require ∃w2l = −1, 2−l ∈ R for

R[x]

〈xn + 1〉
∼=

∏ R[x]⟨
xn−1 ± w2l−1

⟩ ∼= · · · ∼=
∏
i

R[x]⟨
xn−l − wbitrev

2l
(2i+1)

⟩ .
Craft an ω.
▶ Introduce y ∼ x16, R = Zq[y]

/⟨
y16 + 1

⟩
, ω = y.

▶ ↪→: Extension with zero-padding.
▶ We have

Zq[x]

〈x256 + 1〉
∼=

R[x]

〈x16 − y〉
↪→ R[x]

〈x32 − 1〉
∼=

∏
i

R[x]⟨
x− ωbitrev32(i)

⟩ .
Craft the inverses of powers of two.
▶ 2−1R: localization of R at {1, 2, 4, · · ·}.
▶ Practically, compute 2lab ∈ 2lR, then shift right by l bits.
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Performance

▶ NTT, Zq′ [x]
/⟨

x256 + 1
⟩

.
▶ Modular arithmetic in Zq′ .
▶ Multiplication-heavy hom. + fast polymul. with small dim.

▶ NTT, (Zq1 × Zq2) [x]
/⟨

x256 + 1
⟩

.
▶ Modular arithmetic in Zq1 × Zq2 .
▶ Multiplication-heavy hom. + fast polymul. with small dim.

▶ Polynomial ring extension, 2−1R[x]
/⟨

x32 − 1
⟩

:
▶ Arithmetic in Z8192 −→ plain arithmetic in registers.
▶ Addition-heavy hom. + large # fast polymul. with small dim.

Processor NTT, Zq′ NTT, Zq1 × Zq2 Polynomial ring extension
Cortex-M3 98 213 69 187 45 797
Cortex-M4 23 107 37 161 Close to Cortex-M3

Fastest approaches on high-performance processors.
▶ Processors implementing Armv8-A Neon: NTT, Zq′ .
▶ Processors implementing x86 AVX2: NTT, Zq1 × Zq2 .
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Summary I

Optimize polynomial multiplication on microcontrollers.
1. Pick a modular arithmetic.
2. Pick a fast homomorphism.

▶ A lot more to say. See this survey: https://cic.iacr.org/p/1/2/1.

3. Optimize the memory operations.
In reality, we jump between each steps.
▶ A particular modular arithmetic might be the fastest one for a homomorphism on a certain

platform, BUT NOT ON OTHER PLATFORMS.
▶ A particular homomorphism might be best applied to the polynomial ring on a certain

platform, BUT NOT ON OTHER PLATFORMS.
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Summary II

Know your platforms.
▶ Instruction set architecture (ISA):

▶ Armv7E-M: https://developer.arm.com/documentation/ddi0403/ed.
▶ Armv8-M: https://developer.arm.com/documentation/ddi0553/latest.
▶ Armv7-A: https://developer.arm.com/documentation/ddi0406/cb.
▶ Armv8-A: https://developer.arm.com/documentation/ddi0487/gb/?lang=en.
▶ Armv9-A: https://developer.arm.com/documentation/ddi0487/latest/.

▶ Processors.
▶ One for each processor.

▶ Cortex-M: search “Technical Reference Manual.”
▶ Cortex-A: search “Software Optimization Guide.”

▶ If unlucky, no document for the target processor.
▶ Benchmark the instructions following the ISA.

▶ If unlucky, undocumented instructions.
▶ AMX coprocessor in Apple M1, M2, M3: See here: https://github.com/corsix/amx.
▶ Guess how instructions are encoded.
▶ Benchmark the undocumented instructions.
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Summary III

Know the fundamentals.
▶ Fast homomorphisms are conditioned on several things.
▶ Fundamentals in algebra help crafting the desired algebraic structures.

Various algebraic techniques that were found useful in the literature for lattices.
▶ FFTs:

▶ Radix-2 Cooley–Tukey.
▶ Non-radix-2/mixed-radix Cooley–Tukey.
▶ Good–Thomas (tensor product of algebras).
▶ (Truncated)Rader’s.
▶ Schönhage, Nussbaumer (polynomial ring extension).

▶ Toeplitz matrix-vector product (algebraic dual of hom., vector instructions).
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Summary IV

Homomorphisms in ML-KEM and ML-DSA are fixed.

ML-KEM (16-bit Zq)
Processor ISA Modular arith. Layer-merging
Cortex-M3 Armv7-M Plantard 3
Cortex-M4 Armv7E-M Plantard 4
Apple M1 Armv8-A Barrett 4
Haswell x86 + AVX2 Montgomery 3

ML-DSA (32-bit Zq)
Processor ISA Modular arith. Layer-merging
Cortex-M3 Armv7-M Barrett 3
Cortex-M4 Armv7E-M Montgomery 4
Apple M1 Armv8-A Barrett 4
Haswell x86 + AVX2 Montgomery 3
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Summary V

Saber (Z8192)
Processor ISA Modular arith. Hom. Layer-merging
Cortex-M3 Armv7-M Plain Poly. ring ext. 2
Cortex-M4 Armv7E-M Montgomery NTT, Zq′ 4
Apple M1 Armv8-A Barrett NTT, Zq′ 4
Haswell x86 + AVX2 Montgomery NTT, Zq1 × Zq2 3
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Thank you for your attention
Slides: https://vincentvbh.github.io/slides/UK_MMU-UTAR_PQC_2026_01_06.pdf

https://vincentvbh.github.io/slides/UK_MMU-UTAR_PQC_2026_01_06.pdf

