A circular watermark logo of the Max Planck Institute for Security and Privacy. It features a profile of a person's head facing right, with a laurel wreath around the neck. The text "Max Planck Institute for Security and Privacy" is written in a circular path around the top of the wreath.

Max Planck Institute for Security and Privacy

Implementing Polynomial Multiplications for Lattice-Based Cryptography on Microcontrollers

Vincent Hwang

January 6th

1. Lattice-based cryptography.

- ▶ Well-balanced size and computational efficiency.
- ▶ Popular (well-studied).
- ▶ Computational bottleneck:
 - ▶ Polynomial multiplications.
 - ▶ Cryptographic hash functions.

2. Microcontrollers.

- ▶ Resource-constraint devices.
- ▶ Low-level implementation is more preferred.
- ▶ Optimizing compilers are not very “optimizing.”
- ▶ Susceptible to implementation attacks.

3. Polynomial multiplications.

- ▶ Modular arithmetic.
- ▶ Memory optimization of fast homomorphisms.
- ▶ Choices of fast homomorphisms.

Lattice-Based Cryptography

- ▶ Cryptography relying on **lattice** hard problems.
- ▶ Lattice hard problems:
 - ▶ LWE, R-LWE, M-LWE,
 - ▶ SIS, R-SIS, M-SIS, NTRU,
 - ▶ and more...

Unstructured Learning-With-Errors

1. Generate public A (uniform), secret s, e (small support).
2. Compute public $As + e$.
3. Challenge: find (s, e) from $(A, As + e)$.

- ▶ A, s, e : large matrices
- ▶ FrodoKEM (NIST round 3 alternate candidate).
- ▶ Computational bottleneck: As (dimension $n \times n$).
 - ▶ $n = 640 \sim 1344$.
 - ▶ $O(n^3)$ or $O(n^{\log_2 7})$.
 - ▶ Too slow in practice.

1. Generate public A (uniform), secret s, e (small support).
2. Compute public $As + e$.
3. Challenge: find (s, e) from $(A, As + e)$.

- ▶ Ring-learning-with-errors (R-LWE).
 - ▶ A, s, e : elements in **a large polynomial ring**.
 - ▶ NewHope (NIST round 2 candidate).
- ▶ Module-learning-with-errors (M-LWE).
 - ▶ A : small matrix over **a large polynomial ring**.
 - ▶ s, e : small vectors over **a large polynomial ring**.
 - ▶ More flexible on the parameter choices.
 - ▶ ML-KEM, ML-DSA (NIST standards).
- ▶ We need fast polynomial multiplications!
 - ▶ LWE: $O(n^3)$ or $O(n^{\log_2 7})$.
 - ▶ R-LWE, M-LWE (with small module dimension): $O(n^2)$ or $O(n \log n)$.

Polynomial Multiplication

Compute $a(x)b(x)$ in $R[x]/\langle g(x) \rangle$, $R = \mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$ for a positive integer m .

1. Modular arithmetic.

- ▶ How efficient the ring arithmetic in R can be?

2. Fast homomorphisms.

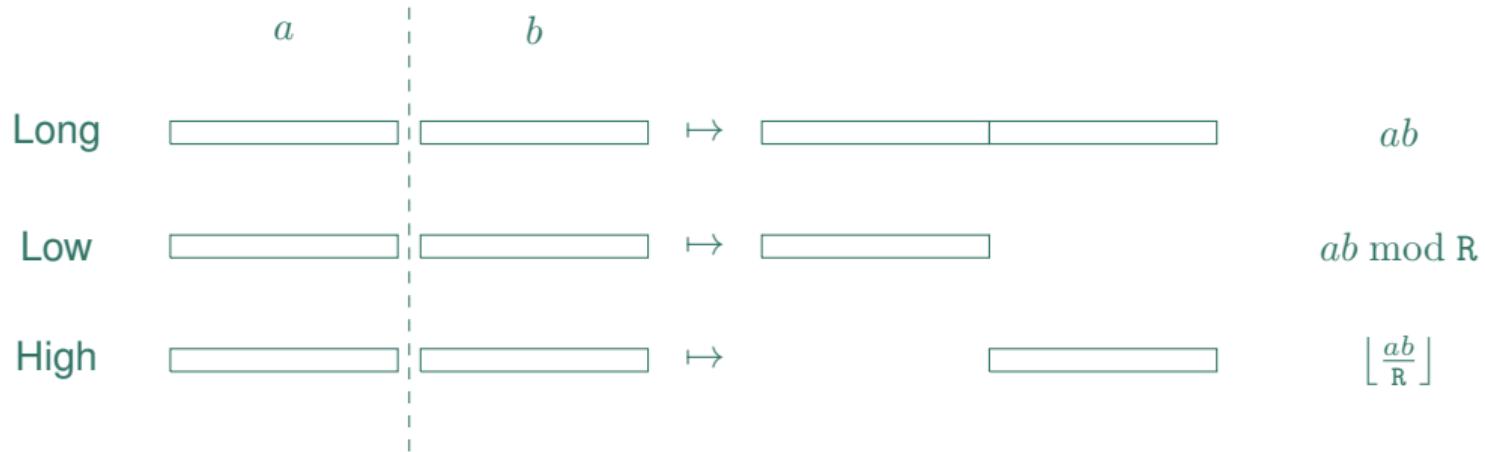
- ▶ Which asymptotically faster (faster than $O(n^2)$) approaches we should choose?
- ▶ Very complicated. Takes many tries.

3. Memory operations.

- ▶ Usually invisible from the math description.

Multiplication Instructions

$R = 2^{16}, 2^{32}$. Signed arithmetic throughout this talk.



- ▶ How to map the modular arithmetic to multiplication instructions?
- ▶ How do the multiplication instructions perform on a particular processor?

Montgomery Multiplication

Fixed modulus q , precision R (power-of-two), precomputed $-q^{-1} \bmod R$.

Given a, b , compute

$$\frac{ab + (-abq^{-1} \bmod R)q}{R} \equiv abR^{-1} \pmod{q}.$$

Division and modulo reduction by R are cheap, free if nicely aligned with the architecture.

- ▶ Result derived from the high parts of the long products.
- ▶ Result is scaled by $R^{-1} \bmod q$.
 - ▶ Additional Montgomery multiplication with $R^2 \bmod q \longrightarrow \equiv ab \pmod{q}$.
 - ▶ Replace b by $bR \bmod q$ (precomputation required).

Cost of Montgomery Multiplication (with Precomputation)

$$\frac{a(bR \bmod q) + (-a(bR \bmod q)q^{-1} \bmod R)q}{R} \equiv ab \pmod{q}$$

1. $a, (bR \bmod q) \mapsto a(bR \bmod q)$: **long mul.**
2. $a(bR \bmod q) \mapsto -a(bR \bmod q)q^{-1} \bmod R$: **low mul.** (assuming $\bmod R$ is free).
3. $-a(bR \bmod q)q^{-1} \bmod R \mapsto (-a(bR \bmod q)q^{-1} \bmod R)q$: **long mul.**
4. Add.
5. Divide by R .

Summary: 2 long mul. + 1 low mul.

Aligning the Arithmetic with Low-Level Instructions

- ▶ Armv7-M (32-bit ISA): native 32-bit low (w/ acc.), long mul. (w/ acc.) instructions.
- ▶ Processors:
 - ▶ Cortex-M3.
 - ▶ Low takes 1 cycle, acc. one takes 2 cycles.
 - ▶ Long mul takes $3 \sim 7$ cycles.
 - ▶ Cortex-M4.
 - ▶ DSP extension: high multiplication instructions.
 - ▶ Each multiplication instruction takes 1 cycle.

How many cycles does 32-bit Montgomery multiplication take?

- ▶ 9 \sim 16 cycles on Cortex-M3.
- ▶ 3 cycles on Cortex-M4.

Alternatives?

- ▶ Can we do better than 32-bit Montgomery mul. on Cortex-M3?
 - ▶ Yes, 32-bit Barrett mul is faster.
- ▶ Can we do better than 32-bit Montgomery mul. on Cortex-M4?
 - ▶ No other known approach outperforming it.
 - ▶ Other approaches perform the same, but with more memory for the precomputed values.

Barrett Multiplication

Given a, b , we have

$$ab \bmod q = ab - \left\lfloor \frac{ab}{q} \right\rfloor q$$

by definition.

Barrett mul. approximates $\left\lfloor \frac{ab}{q} \right\rfloor$ up to a small integral perturbation. Various formulations (bR/q precomputed).

- ▶ $\left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor$.
- ▶ $\left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor$.
- ▶ $\left\lfloor \left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor \right\rfloor$, advanced rounding technique [1].

Cost of Barrett Multiplication

Typically, $ab - \left\lfloor \frac{a bR/q}{R} \right\rfloor q \in \left[-\frac{R}{2}, \frac{R}{2} \right)$ so

$$ab - \left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor q = (ab \bmod R) - \left(\left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor q \bmod R \right).$$

1. $a, b \mapsto ab \bmod R$: low mul.
2. $a, \lfloor bR/q \rfloor \mapsto \left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor$: high mul.
3. $\left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor, q \mapsto \left\lfloor \frac{a \lfloor bR/q \rfloor}{R} \right\rfloor q \bmod R$: low mul.
4. Subtract.

Summary: 2 low mul. + 1 high mul.

- Cortex-M3: 6 ~ 10 cycles.
- Cortex-M4: 3 cycles.

Comparisons

- ▶ Cortex-M3:
 - ▶ Montgomery: 9 ~ 16 cycles.
 - ▶ (Preferred) Barrett: 6 ~ 10 cycles.
- ▶ Cortex-M4:
 - ▶ (Preferred) Montgomery: 3 cycles, precomputed $bR \bmod q$ (we don't need b anymore).
 - ▶ Barrett: 3 cycles, precomputed $\left\lfloor \frac{bR}{q} \right\rfloor$ (we still need b).
- ▶ Know your instruction set architecture.
- ▶ Know your platform.
- ▶ Constant-time?
 - ▶ Advanced rounding technique on Cortex-M3.
 - ▶ Solution: see [this paper](#):
<https://tches.iacr.org/index.php/TCCHES/article/view/11926/11785>.

Fast Homomorphisms

$\deg \mathbf{g} = n, \deg \mathbf{h}_i < n.$

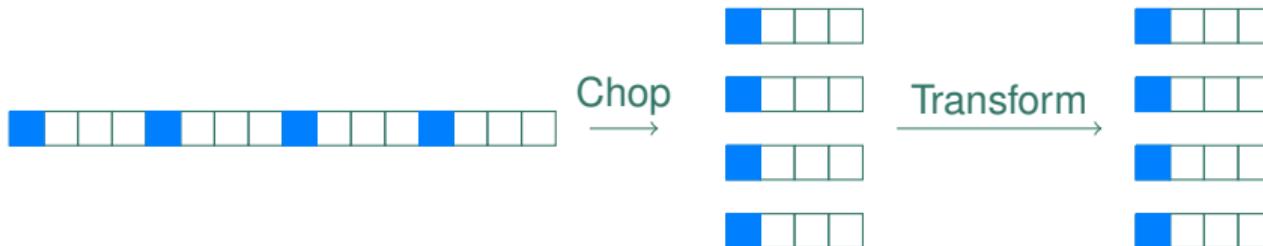
$$R[x]/\langle \mathbf{g} \rangle \xrightarrow{\text{Fast homomorphism } f.} \prod_i R[x]/\langle \mathbf{h}_i \rangle$$

$$\mathbf{a}(x)\mathbf{b}(x) = f^{-1}(f(\mathbf{a}(x))f(\mathbf{b}(x)) \in R[x]/\langle \mathbf{g} \rangle$$

- ▶ Large polynomial ring \rightarrow several small polynomial rings.
- ▶ Toom– k : $O(n^{\log_k(2k-1)})$.
- ▶ Number-theoretic transforms: $O(n \log_2 n)$.
- ▶ Number-theoretic transforms (with poly. ring extensions): $O(n \log_2 n \log_2 \log_2 n)$.
- ▶ A lot of ways.

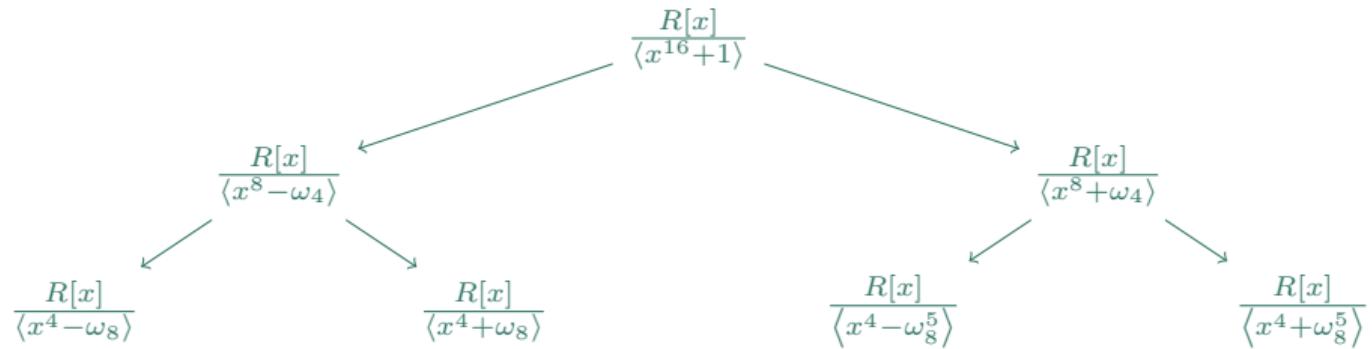
Frequently Seen Patterns

Component-wise arithmetic of sub-polynomials.



- ▶ Chop phase is free (for illustration only).
- ▶ Transform phase costs.
 - ▶ Arithmetic cost can be inferred from the math.
 - ▶ Memory cost is usually invisible from the math.

Number-Theoretic Transform



Poly. mul. in $R[x]/\langle x^{16} + 1 \rangle \rightarrow$ four poly. mul. of the form $R[x]/\langle x^4 - \alpha \rangle$.

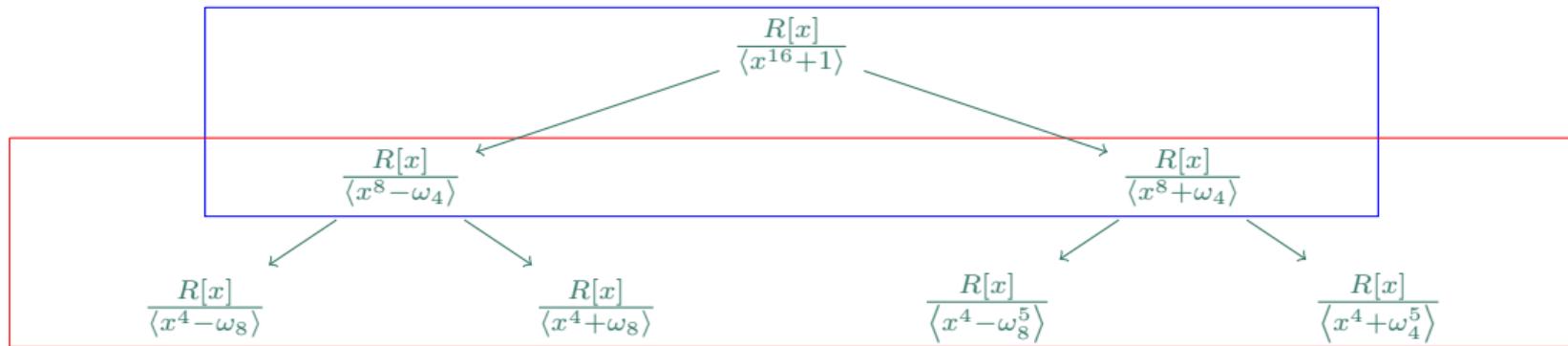
Memory and Registers

- ▶ Registers:
 - ▶ Fast memory inside the processor.
 - ▶ # register is ISA-fixed.
 - ▶ Bit-size of register is ISA-fixed.
- ▶ Memory:
 - ▶ Access through memory bus: incurring overhead.
 - ▶ Size of memory depends on what the platform designers want.

How to minimize transfers between memory and registers?

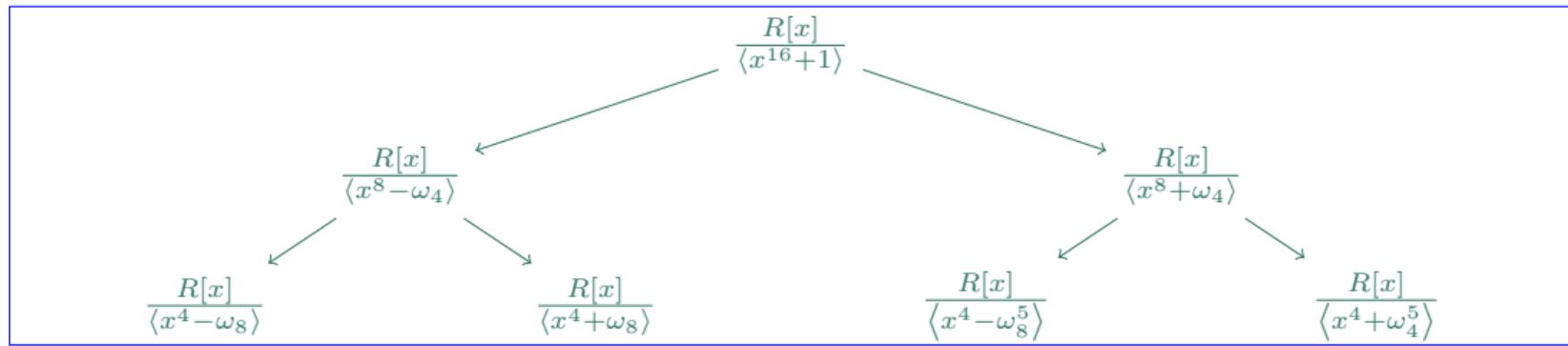
- ▶ Issue as much arithmetic as possible while dependent data are in register.
- ▶ Restructure the computation flow if needed.

Memory Operation Cost (First Try)



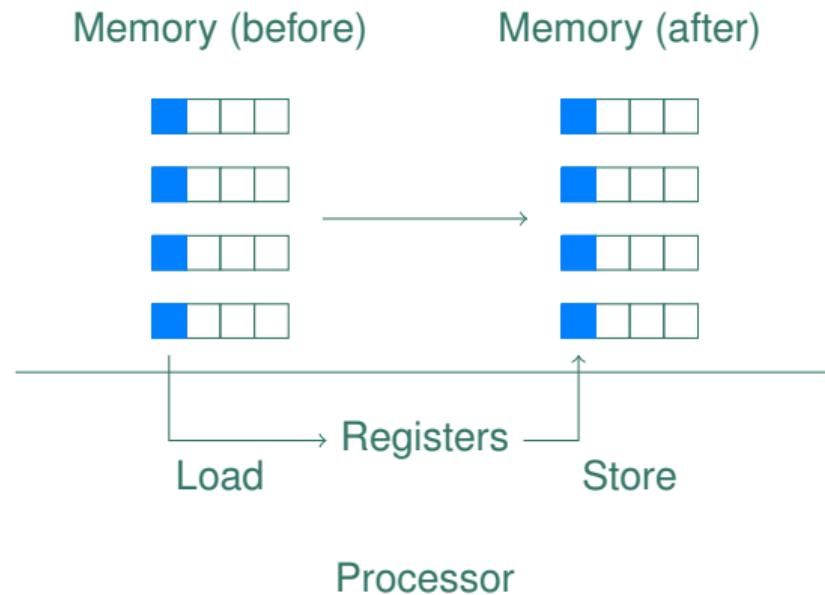
Two load-store pairs for each entry. First and Second.

Memory Operation Cost (Optimized): Layer-Merging

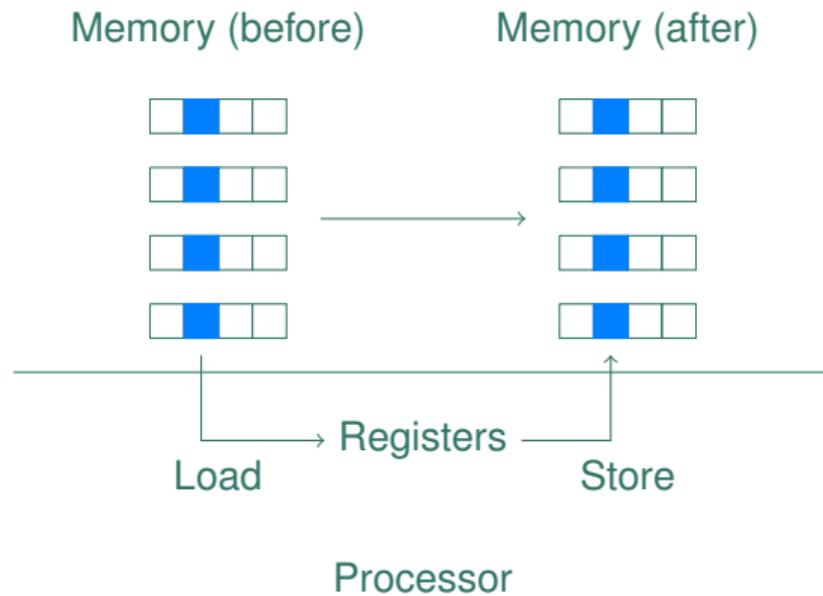


One load-store pair for each entry.

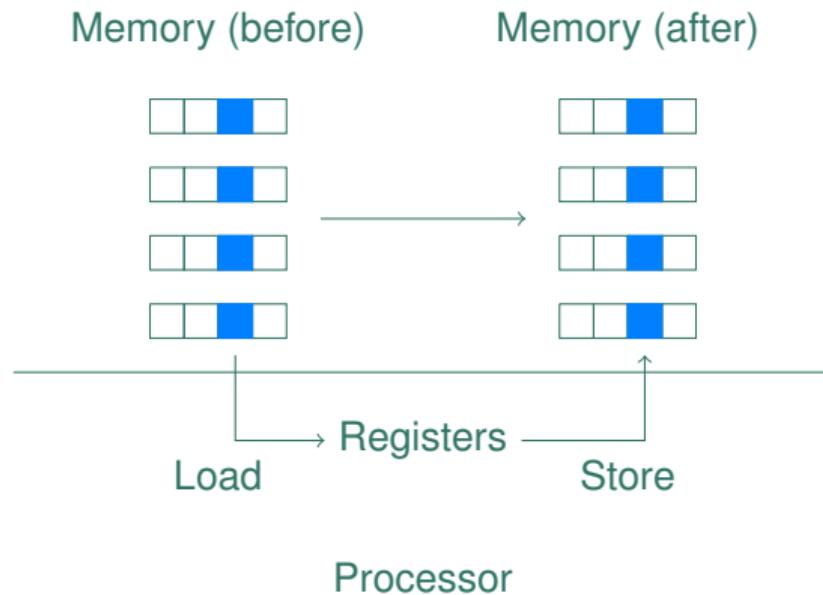
Memory Operation Cost (Optimized, Concretely)



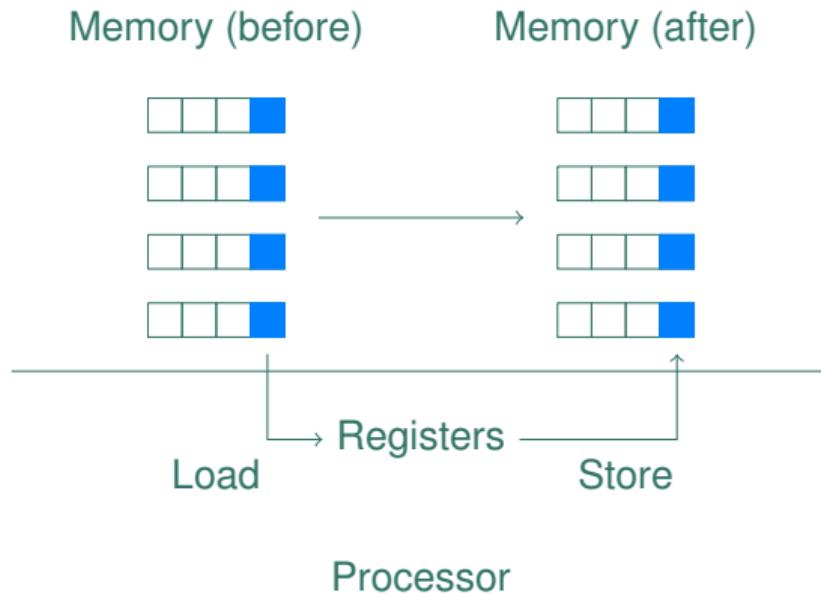
Memory Operation Cost (Optimized, Concretely)



Memory Operation Cost (Optimized, Concretely)



Memory Operation Cost (Optimized, Concretely)



Choosing a Fast Homomorphism

$\deg \mathbf{g} = n, \deg \mathbf{h}_i < n.$

$$R[x]/\langle \mathbf{g} \rangle \xrightarrow{\text{Fast homomorphism } f.} \prod_i R[x]/\langle \mathbf{h}_i \rangle$$

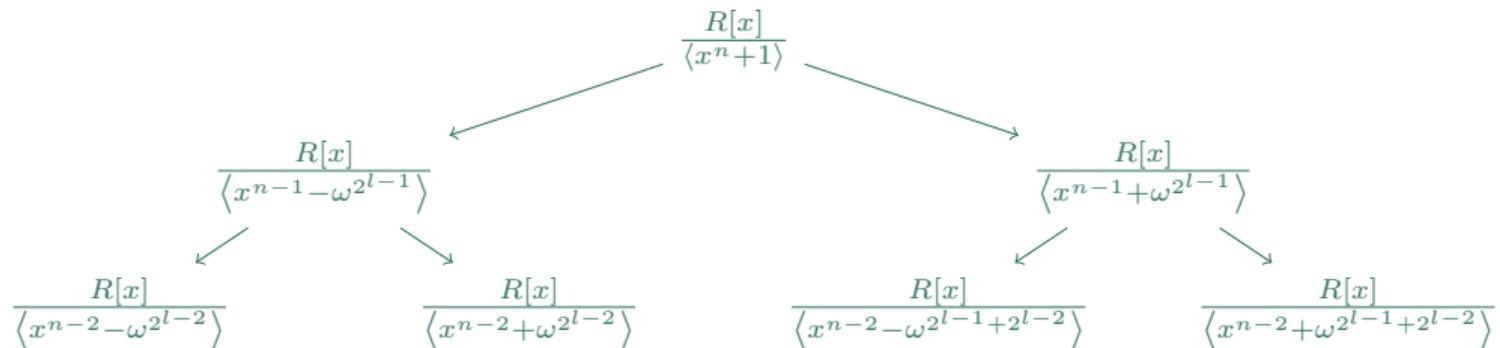
$$\mathbf{a}(x)\mathbf{b}(x) = f^{-1}(f(\mathbf{a}(x))f(\mathbf{b}(x))) \in R[x]/\langle \mathbf{g} \rangle$$

- ▶ Necessary conditions of the homomorphisms.
- ▶ Algebraic properties of the polynomial rings.
- ▶ Performance characteristics of the platforms:
 - ▶ Multiplication instructions.
 - ▶ Vectorization (for high-performance processors).

Power-of-Two Cyclotomic Polynomial Rings I

For $\forall l \leq n \in \mathbb{Z}$, $n = 2^m$, we require $\exists w^{2^l} = -1 \in R$ and $\exists 2^{-l} \in R$ for the Cooley–Tukey FFT

$$\frac{R[x]}{\langle x^n + 1 \rangle} \cong \prod \frac{R[x]}{\langle x^{n-1} \pm w^{2^{l-1}} \rangle} \cong \dots \cong \prod_i \frac{R[x]}{\langle x^{n-l} - w^{\text{bitrev}_2 l (2i+1)} \rangle}.$$



Power-of-Two Cyclotomic Polynomial Rings II

$R = \mathbb{Z}_q$ in lattices. $\exists \omega^{2^l} = -1 \in R?$ $\exists 2^{-l} \in R?$

Scheme	q	l
ML-KEM	$3329 = 13 \cdot 256 + 1$	≤ 7
ML-DSA	$8380417 = 2^{23} - 2^{13} + 1$	≤ 12
Saber (round 3 candidate)	$8192 = 2^{13}$	0

- ▶ ML-KEM: $\mathbb{Z}_{3329}[x]/\langle x^{256} + 1 \rangle \cong \prod_i \mathbb{Z}_{3329}[x]/\langle x^2 - \alpha_i \rangle$.
- ▶ ML-DSA: $\mathbb{Z}_{8380417}[x]/\langle x^{256} + 1 \rangle \cong \prod_i \mathbb{Z}_{8380417}[x]/\langle x - \alpha_i \rangle$.
- ▶ Saber: $\mathbb{Z}_{8192}[x]/\langle x^{256} + 1 \rangle$?

Approach One: Choose a New Coefficient Ring

In lattices, one of a, b has small coefficients.

- ▶ Coeff. of $a < q$.
- ▶ Coeff. of $b <$ a small constant μ .
- ▶ Coeff. of ab in $\mathbb{Z} < q \cdot n \cdot \mu$.
- ▶ Compute over $\mathbb{Z}_{q'}$ for an odd $q' \geq q \cdot n \cdot \mu$.
- ▶ Reduce to \mathbb{Z}_q at the end of poly. mul.
- ▶ CRT: $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2}$ with $q_1 q_2 \geq q \cdot n \cdot \mu$.
- ▶ Signed arithmetic relaxed to $\geq q \cdot n \cdot \mu/2$.

Approach Two: Polynomial Ring Extension

For $\forall l \leq n \in \mathbb{Z}$, we require $\exists w^{2^l} = -1, 2^{-l} \in R$ for

$$\frac{R[x]}{\langle x^n + 1 \rangle} \cong \prod \frac{R[x]}{\langle x^{n-1} \pm w^{2^{l-1}} \rangle} \cong \dots \cong \prod_i \frac{R[x]}{\langle x^{n-l} - w^{\text{bitrev}_{2^l}(2i+1)} \rangle}.$$

Craft an ω .

- ▶ Introduce $y \sim x^{16}$, $\mathcal{R} = \mathbb{Z}_q[y]/\langle y^{16} + 1 \rangle$, $\omega = y$.
- ▶ \hookrightarrow : Extension with zero-padding.
- ▶ We have

$$\frac{\mathbb{Z}_q[x]}{\langle x^{256} + 1 \rangle} \cong \frac{\mathcal{R}[x]}{\langle x^{16} - y \rangle} \hookrightarrow \frac{\mathcal{R}[x]}{\langle x^{32} - 1 \rangle} \cong \prod_i \frac{\mathcal{R}[x]}{\langle x - \omega^{\text{bitrev}_{32}(i)} \rangle}.$$

Craft the inverses of powers of two.

- ▶ $2^{-1}\mathcal{R}$: localization of \mathcal{R} at $\{1, 2, 4, \dots\}$.
- ▶ Practically, compute $2^l ab \in 2^l \mathcal{R}$, then shift right by l bits.

Performance

- ▶ NTT, $\mathbb{Z}_{q'}[x]/\langle x^{256} + 1 \rangle$.
 - ▶ Modular arithmetic in $\mathbb{Z}_{q'}$.
 - ▶ Multiplication-heavy hom. + fast polymul. with small dim.
- ▶ NTT, $(\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2})[x]/\langle x^{256} + 1 \rangle$.
 - ▶ Modular arithmetic in $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2}$.
 - ▶ Multiplication-heavy hom. + fast polymul. with small dim.
- ▶ Polynomial ring extension, $2^{-1}\mathcal{R}[x]/\langle x^{32} - 1 \rangle$:
 - ▶ Arithmetic in $\mathbb{Z}_{8192} \rightarrow$ plain arithmetic in registers.
 - ▶ Addition-heavy hom. + large # fast polymul. with small dim.

Processor	NTT, $\mathbb{Z}_{q'}$	NTT, $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2}$	Polynomial ring extension
Cortex-M3	98 213	69 187	45 797
Cortex-M4	23 107	37 161	Close to Cortex-M3

Fastest approaches on high-performance processors.

- ▶ Processors implementing Armv8-A Neon: NTT, $\mathbb{Z}_{q'}$.
- ▶ Processors implementing x86 AVX2: NTT, $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2}$.

Optimize polynomial multiplication on microcontrollers.

1. Pick a modular arithmetic.
2. Pick a fast homomorphism.
 - ▶ A lot more to say. See [this survey](https://cic.iacr.org/p/1/2/1): <https://cic.iacr.org/p/1/2/1>.
3. Optimize the memory operations.

In reality, we jump between each steps.

- ▶ A particular modular arithmetic might be the fastest one for a homomorphism on a certain platform, BUT NOT ON OTHER PLATFORMS.
- ▶ A particular homomorphism might be best applied to the polynomial ring on a certain platform, BUT NOT ON OTHER PLATFORMS.

Know your platforms.

- ▶ Instruction set architecture (ISA):
 - ▶ **Armv7E-M:** <https://developer.arm.com/documentation/ddi0403/ed>.
 - ▶ **Armv8-M:** <https://developer.arm.com/documentation/ddi0553/latest>.
 - ▶ **Armv7-A:** <https://developer.arm.com/documentation/ddi0406/cb>.
 - ▶ **Armv8-A:** <https://developer.arm.com/documentation/ddi0487/gb/?lang=en>.
 - ▶ **Armv9-A:** <https://developer.arm.com/documentation/ddi0487/latest/>.
- ▶ Processors.
 - ▶ One for each processor.
 - ▶ Cortex-M: search “Technical Reference Manual.”
 - ▶ Cortex-A: search “Software Optimization Guide.”
 - ▶ If unlucky, no document for the target processor.
 - ▶ Benchmark the instructions following the ISA.
 - ▶ If unlucky, undocumented instructions.
 - ▶ AMX coprocessor in Apple M1, M2, M3: See **here:** <https://github.com/corsix/amx>.
 - ▶ Guess how instructions are encoded.
 - ▶ Benchmark the undocumented instructions.

Know the fundamentals.

- ▶ Fast homomorphisms are conditioned on several things.
- ▶ Fundamentals in algebra help crafting the desired algebraic structures.

Various algebraic techniques that were found useful in the literature for lattices.

- ▶ FFTs:
 - ▶ Radix-2 Cooley–Tukey.
 - ▶ Non-radix-2/mixed-radix Cooley–Tukey.
 - ▶ Good–Thomas (tensor product of algebras).
 - ▶ (Truncated)Rader's.
 - ▶ Schönhage, Nussbaumer (polynomial ring extension).
- ▶ Toeplitz matrix-vector product (algebraic dual of hom., vector instructions).

Summary IV

Homomorphisms in ML-KEM and ML-DSA are fixed.

ML-KEM (16-bit \mathbb{Z}_q)			
Processor	ISA	Modular arith.	Layer-merging
Cortex-M3	Armv7-M	Plantard	3
Cortex-M4	Armv7E-M	Plantard	4
Apple M1	Armv8-A	Barrett	4
Haswell	x86 + AVX2	Montgomery	3

ML-DSA (32-bit \mathbb{Z}_q)			
Processor	ISA	Modular arith.	Layer-merging
Cortex-M3	Armv7-M	Barrett	3
Cortex-M4	Armv7E-M	Montgomery	4
Apple M1	Armv8-A	Barrett	4
Haswell	x86 + AVX2	Montgomery	3

Summary V

Saber (\mathbb{Z}_{8192})

Processor	ISA	Modular arith.	Hom.	Layer-merging
Cortex-M3	Armv7-M	Plain	Poly. ring ext.	2
Cortex-M4	Armv7E-M	Montgomery	NTT, $\mathbb{Z}_{q'}$	4
Apple M1	Armv8-A	Barrett	NTT, $\mathbb{Z}_{q'}$	4
Haswell	x86 + AVX2	Montgomery	NTT, $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2}$	3

Thank you for your attention

Slides: https://vincentvvh.github.io/slides/UK_MMU-UTAR_PQC_2026_01_06.pdf